
D e v e l o p e r ' s G u i d e
Atalasoft JoltImage 10.6.1

Contents

Introduction 1

Installing JoltImage 2

Licensing JoltImage 4

Product Identities 5

Web Scanning 6

Basic Requirements 7

Getting Started with Web Capture 8

Web Capture Guide 9

Web Scanning Server Reference 17

Troubleshooting Web Capture Handlers 18

Extending the WebCaptureRequestHandler 20

Connecting to SharePoint 23

Extending the KicHandler 25

Connecting to Kofax Import Connector (KIC) Web Services 26

Configuring Kofax Import Connector (KIC) 27

Web Scanning Client Reference 30

Initializing the Control on the Client 31

Connecting to UI Controls 34

Filtering Selection Lists 36

Connecting Controls With No UI 37

Importing Loose Pages 38

Batch Fields 39

Working with Index Fields 41

Handling Events 43

Handling Errors 46

Setting Scanning Options 50

Connecting to the Web Document Viewer 56

Using VirtualReScan (VRS) 58

Testing Your Application 59

Troubleshooting Web Scanning Problems 60

Uninstalling Web Capture MSI 62

- i -

Chapter 2

Client API Reference 63

Web Document Viewer 69

Web Document Viewer Overview 70

Web Document Viewer Guide 72

WebDocumentViewer Javascript API 76

Constructor & Configuration Parameters 77

Public Methods 80

Events 86

The Annotation Object 90

WebDocumentViewer Sample Code 93

WebDocumentThumbnailer Javascript API 99

Constructor & Configuration Parameters 100

Public Methods 102

Events 106

Atalasoft JoltPdf 107

Introduction 108

Programming with JoltPdf 109

Introduction 132

Mathematical Model 133

Transforms 134

PdfGeneratedDocument 137

Pages 138

Creating Stationery 139

Clipping 142

Colors 143

Rendering 144

Resources 145

Shapes 151

Round Trip Documents 172

Integrating with JoltImage 173

Actions 175

Annotations 181

Annotation How To's 214

PDF Forms 229

DotPdf_Repair 232

- ii -

Digital Signatures 239

OCR Engine 256

See Also 258

OCR Document Design Considerations 259

Tesseract Engine 260

OfficeAdapterDecoder Introduction 261

OfficeSession 262

Barcode Recognition 265

Features 266

267

Editions 267

Symbologies 268

Requirements 269

Deployment 270

How to: Use the JoltImage Barcode Reader 271

How to: Read a Barcode with Options Set 272

- iii -

Introduction

Introduction
JoltImage is an easy-to-use SDK for capture-enabling your website with web scanning, image
processing, and document viewing and annotating.

Installing JoltImage 2

Licensing JoltImage 4

Product Identities 5

- 1 -

Chapter 3

Installing JoltImage
JoltImage downloads are available on the Atalasoft website (www.atalasoft.com). Click on the
download link to access the downloads page.

Prerequisites

Before attempting to use JoltImage in any of your projects, take a moment to verify that all of
the following pre-requisites are met on your development and production systems.

Java

JoltImage depends on JavaSE 6 and JavaEE 6 for all web components.

Application server

JoltImage web components (servlets) must be run in a Servlet 3.0 compatible application
server, such as Oracle GlassFish Server 3.0 or later.

Java Advanced Imaging

JoltImage has an external dependency on multiple components of Java Advanced Imaging
(JAI), which must be downloaded and installed separately. The required modules are:

l jai_core.jar

l jai_codec.jar

l jai_imageio.jar

Due to licensing restrictions, we are unable to directly distribute these JAI dependencies
with our product.

Please refer to the Support page for more information about 3rd party components. To access
the Support page, go to www.kofax.com/support.

For these packages, download the windows-i586-jdk installer. The JDK redistributables
will place the 3 above modules into your JDK's extension directory, allowing them to auto-
matically be picked up by your application server and client applications. If the above repos-
itories are not available, you will need to locate the JAI packages from an alternate location.

If your environment requires it, you may use any of the other JAI installers or packages
available. You are responsible for knowing where they place the JAI jars and whether or not
your application server will find them.

Including JoltImage in your project

Unzip the contents of the JoltImage zip file to a convenient location on your system. The zip
file contains the SDK jar files, documentation, and client-side web resources.

It is recommended that you copy the SDK jar files directly into a location within your project.
If you are using any of the web components included with JoltImage, such as web scanning or
web document viewing, you will also need to copy the associated web resources directories
into the content root (e.g. WebContent) of your project.

In your project properties area of your IDE, add ProductAPI.jar, JoltImage.jar, and JoltBar-
codeReading.jar as external jar references to your build path. If you are deploying a web pro-
ject, make sure ProductAPI.jar, JoltImage.jar, and JoltBarcodeReading.jarare also included as
a deployment assembly, so that it is included in any WAR files you export.

- 2 -

http://www.atalasoft.com/
http://www.kofax.com/support

Introduction

JoltBarcodeReading is an add-on to JoltImage. It requires JoltImage in order to run, but if
your project does not require barcode reading, you need not include JoltBarcodeReadingin
your project.

- 3 -

Chapter 3

Licensing JoltImage
To properly use non-evaluation versions of JoltImage, the product must be licensed at
runtime.

Obtaining a license

To activate a purchased product license or to get a time-limited evaluation license, run the
Activation Wizard that was included in JoltImage zip file. This wizard will download one or
more license files to a location in your user profile, such as:

C:\Users\<username>\AppData\Local\Atalasoft\DotImage 10.6

Using a license

A license must be activated in your code before you use any of the SDK functionality. Pro-
ductAPI.jar provides several static methods in the LicenseValidator class for setting your
license at runtime from strings, files, or streams. The validateLicense methods take one
or two arguments:

l A string, stream, or file path for the contents of your license.

l (Optional) An Identity object for explicitly licensing a component.

For servlets in particular, a static constructor is the best place to put all of your product
licensing.

Example: Licensing JoltImage in a web application

package com.mycompany.myproduct;

import java.io.File;
import javax.servlet.http.HttpServlet;

import com.atalasoft.licensing.LicenseValidator;

public class MyWebHandler extends HttpServlet
{

static
{

LicenseValidator.validateLicense(new File("path/to/license.lic"));
}

// ...
}

See Product Identities for more information on identities and a list of available product iden-
tities.

Distribution

Licenses are tied to a single machine, such as an application server or a developer's work-
station.

If you are interested in licensing a Java application for distribution (e.g. a desktop applic-
ation), please contact Atalasoft Sales.

- 4 -

Introduction

Product Identities
The full JoltImage SDK is broken into a collection of separately licensed components, each
identified by a unique Product Identity class. Product Identity objects are used to activate
licenses, and are rooted in the com.atalasoft.products package. The Identity objects must be
obtained from a corresponding Product class within the same package.

Products

The following table lists the currently defined product classes and their associated func-
tionality. See Licensing JoltImage for activating a license on a product.

Product Description

imaging.ImagingProduct The main JoltImage SDK for image processing
and full web document viewing.

webcapture.WebCaptureProduct Web scanning components.

barcoding.reading.BarcodingProduct An add-on to JoltImage for reading barcodes
from images.

- 5 -

Chapter 3

Web Scanning
The following sections describe the JoltImage web scanning controls and available back-end
handlers.

Basic Requirements 7

Getting Started with Web Capture 8

Web Capture Guide 9

- 6 -

Web Scanning

Basic Requirements
JoltImage Web Scanning has the following requirements:

On the Client

l Windows XP, Windows Vista, or Windows 7.

l A scanning device with a working TWAIN driver.

l 32-bit Microsoft Internet Explorer 8, 9, Mozilla Firefox 4.0 or later, or Google Chrome

l On Firefox and Chrome, the JoltImage Web Capture Plugin must be installed or be
allowed to install, and must not be disabled.

On the Server

l A writable location for files to be uploaded: either a location on the disk that the applic-
ation can read and write to, or a database.

l I f You Use Our Server-side Java Classes

l Java SE 1.6.

l Oracle Glassfish 3.0 or later.

l Java Advanced Imaging (JAI) installed into your JRE, classpath, or application
domain.

If you connect to Kofax Capture through Kofax Import Connector

l The Kofax Capture (KC), and Kofax Import Connector (KIC) must have at least a "KIC
- Electronic Documents - Web Service interface" license.

l If connecting to KC through KIC, then KC must be version 9 or 10.

- 7 -

Chapter 3

Getting Started with Web Capture
Once you have satisfied the Basic Requirements for web scanning, use the in-depth guide or
follow the steps below to scan-enable a web application using the JoltImage Web Scanning
Control.

Use the in-depth guide

To get started with in-depth instructions, follow the Web Capture Guide. The guide will step
you though everything needed to build a page with functional web scanning.

- 8 -

Web Scanning

Web Capture Guide
This step-by-step guide is designed to bring you through all the steps of creating a new cap-
ture-enabled web project. Topics include adding the document viewer and scanning controls
to your web page, and handling uploaded content on the server. Several steps will contain
cross-references to other topics with more detailed information.

This guide is intended to be followed exactly, but it is not intended to give you a solution that
is ready to deploy. Once you have succeeded building the example project, you can begin
modifying it to fit your product's needs.

This guide assumes that Eclipse will be the IDE used to develop the project. If you are using
another IDE, adjust any of the steps as necessary to suit your environment.

Setting up a new project

A capture-enabled web application requires these basic elements:

l A client-side JSP or HTML page containing the web scanning controls and document
viewer.

l A server-side servlet for the Web Document Viewer.

l A server-side servlet for the Web Capture back end.

l WebCapture and WebDocumentViewer resources files.

l An upload location for scanned documents.

Start by creating a new Dynamic Web Project in Eclipse. For the purposes of this guide, it is
assumed this project is called BasicWebCapture.

Adding references

After the project is created, open the project's properties and make the following configuration
changes:

l In the Java Build Path section, click the Libraries tab and add the following external
jars:

l JoltImage.jar

l javaee-api-6.0.jar (or any jar that provides a J2EE-6.0-compatible API)

l All JAR files in the /lib directory of the JoltImage distribution. See Installing
JoltImage for additional information.

l In the Deployment Assembly section, add a new Assembly Directive by selecting Java
Build Path Entries from the Add menu, and then selecting JoltImage.jar from the list
of available entries. This step is optional if you plan on making JoltImage.jar available
to your application container by some other means. Repeat this step for the /lib depend-
encies you also added to your build path.

Copy in web resources

WingScan comes with two sets of web resources: WebCapture and WebDocumentViewer.
These resources were included with theJoltImage distribution, located in \WebResources.

Copy the WebCapture and WebDocumentViewer directories into the content root (WebCon-
tent directory by default) of your project.

Create the upload location

Create a new directory in the content root of your project called atala-capture-upload. This is
the default path that will be used for storing images uploaded by the web scanning controls.

- 9 -

Chapter 3

If you need to change the location of the upload path (for example, to place it in a location
outside of your document root), you can set an atala_uploadpath init-param property in
either the Web Document Viewer servlet entry of your web.xml, or in the @WebServlet annota-
tion on your Web Document Viewer handler class.

Adding the Web Document Viewer Handler

The Web Document Viewer handler is responsible for communicating with the Web Document
Viewer embedded in your page, and is separate from the capture handler.

Add a new class to your project. For the purposes of this guide, it is assumed this class will
be com.mydomain.myproject.WebDocViewerHandler.

Change the class definition to extend WebDocumentRequestHandler (part of
com.atalasoft.imaging.webcontrols).

Add a @WebServlet annotation to publicly expose the handler, unless you intend on mapping
all of your servlets in the web.xml deployment descriptor.

Your class should resemble the following example.

Java

package com.mydomain.myproject;

import javax.servlet.annotation.MultipartConfig;
import javax.servlet.annotation.WebServlet;

import com.atalasoft.imaging.webcontrols.WebDocumentRequestHandler;

@MultipartConfig
@WebServlet(

name = "WebDocViewerHandler",
urlPatterns = "/WebDocViewerHandler"

)
public class WebDocViewerHandler extends WebDocumentRequestHandler {

private static final long serialVersionUID = 1L;

static {
// Licensing code - see Licensing JoltImage

}
}

Check Licensing JoltImage to see if there are further changes that must be made to activate
licensing. Otherwise, there is no need for further modification to your handler.

Adding the Web Capture Handler

The Web Capture handler is responsible for handling file uploads from the scanning controls
embedded in your page, and routing them to their next destination along with any necessary
metadata. It is also responsible for supplying the scanning controls with the available content
and document types, and status information.

For this guide, we will create a custom handler that provides a few static content and doc-
ument types, and saves uploaded files to another location. Using this baseline, you can con-
tinue modifying the handler to suit your own document handling needs.

If your organization uses Kofax Import Connector (KIC) for document management,
JoltImage ships with handlers to connect to this service.

l For connecting to KIC, see: Connecting to Kofax Import Connector (KIC) Web Services
and Extending the KicHandler.

Creating your own handler

- 10 -

Web Scanning

Add a new class to your project. For the purposes of this guide, it is assumed this class will
be called com.mydomain.myproject.WebCaptureHandler.

The handler should be modified to extend from WebCaptureRequestHandler (part of
com.atalasoft.imaging.webcontrols.capture). Your handler will need to override several meth-
ods of WebCaptureRequestHandler. Your handler should resemble the following example.

Java

package com.mydomain.myproject;

import java.util.List;

import javax.servlet.annotation.MultipartConfig;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import com.atalasoft.imaging.webcontrols.capture.WebCaptureRequestHandler;

@MultipartConfig
@WebServlet(

name = "WebCaptureHandler",
urlPatterns = "/WebCaptureHandler"

)
public class WebCaptureHandler extends WebCaptureRequestHandler {

private static final long serialVersionUID = 1L;

static {
// Licensing code - see Licensing JoltImage

}

@Override
protected List<String> getContentTypeList (

HttpServletRequest request, HttpServletResponse response) {
// ...

}

@Override
protected Lis<Dictionary<String, String>> getContentTypeDescription (

HttpServletRequest request, HttpServletResponse response, String contentType) {
// ...

}

@Override
protected Dictionary<String, String> importDocument (

HttpServletRequest request, HttpServletResponse response,
String fileName, String contentType, String contentTypeDocClass, String

contentTypeDesc) {
// ...

}
}

The three stubs represent the minimum number of methods that must be implemented for
basic functionality, but there are other methods available in the public API that can also have
their behavior overridden, such as methods to generate IDs or query the status of documents.
Refer to the accompanying object reference for the complete WebCaptureRequestHandler
API.

getContentTypeList

This method returns the collection of available content types that can be used to organize
scanned and uploaded documents. Content types are the top-level organizational unit, and
each one has its own collection of document types (also called document classes) below it.

- 11 -

Chapter 3

For this example, getContentTypeList will be implemented to return a fixed list of two
types: Accounts and HR. In a real system, this would probably query a database or other data
source instead. In the KIC and SharePoint handlers, this method queries the system for these
values.

Java

@Override
protected List<String> getContentTypeList (

HttpServletRequest request, HttpServletResponse response) {
return Arrays.asList("Accounts", "HR");

}

getContentTypeDescription

This method returns a collection of data describing all the document types under a single con-
tent type. The return data is a list of dictionaries, where each dictionary contains a set of prop-
erties describing a single document type. In this example, the only property returned for a
document type is its documentClass, which serves as its name.

Java

@Override
protected List<Dictionary<String, String>> getContentTypeDescription (

HttpServletRequest request, HttpServletResponse response, String contentType) {
if (contentType.equals("Accounts"))

return createDocumentClassDictionaryList(new String[] { "Invoices", "Purchase Orders"
});

else if (contentType.equals("HR"))
return createDocumentClassDictionaryList(new String[] { "Resumes" });

else
return super.getContentTypeDescription(request, response, contentType);

}

private List<Dictionary<String, String>> createDocumentClassDictionaryList(String[] docList)
{

List<Dictionary<String, String>> list = new ArrayList<Dictionary<String, String>>();
for (String doc : docList) {

Dictionary<String, String> d = new Hashtable<String, String>();
d.put("documentClass", doc);
list.add(d);

}
return list;

}

A helper method is provided to produce the actual list of document types, while
getContentTypeDescription switches on a given content type to determine what doc-
ument types should be included in the list. As with content types, it is expected that this
data will originate from another data source, instead of being hard-coded.

importDocument

This method is responsible for actually moving a document and its metadata to its real des-
tination, which could be a directory, database, or system like KIC and SharePoint.

- 12 -

Web Scanning

Java

@Override
protected Dictionary<String, String> importDocument (

HttpServletRequest request, HttpServletResponse response,
String fileName, String contentType, String contentTypeDocClass, String

contentTypeDesc) {
String docId = UUID.randomUUID().toString();
String fileExt = fileName.substring(fileName.lastIndexOf("."));

try {
String uploadPath = getUploadPath() + "\\" + fileName;
String importPath = "C:\\DocumentStore\\" + contentType + "\\" + contentTypeDocClass

+ "\\" + docId + "." + fileExt;

copyFile(uploadPath, importPath);
} catch (IOException e) { }

Dictionary<String, String> result = new Hashtable<String, String>();
result.put("success", "true");
result.put("id", "docId");
result.put("status", "Import succeeded");
return result;

}

private void copyFile (String source, String dest) throws IOException {
FileInputStream fIn = new FileInputStream(source);
FileOutputStream fOut = new FileOutputStream(dest);

byte[] buffer = new byte[1024];
int length = 0;
while ((length = fIn.read(buffer)) > 0)

fOut.write(buffer, 0, length);

fIn.close();
fOut.close();

}

In this example, imported documents are copied into a directory tree rooted at C:\Docu-
mentStore, using the content type and document class as subdirectories for organizing files.
The imported file is copied and given a new name based on a UUID, which is also passed
back to the client in the "id" field of a dictionary. The id could be used by the client to query
the handler at a future time for the status of the imported document, but this functionality is
not included in the guide.

Since the sample code does not check if the directories exist ahead of time, make sure you cre-
ate the directory tree before testing.

l C:\DocumentStore\
l Accounts\

l Invoices\
l Purchase Orders\

l HR\
l Resumes\

Setting up the scanning controls and viewer

The setup for web scanning just requires placing some JavaScript, CSS, and HTML into your
page.

Add a new JSP to your project. We’ll assume that this file is called index.jsp. Since this part
of the Web Document Viewer is purely client-side you could just as easily use a standard

- 13 -

Chapter 3

HTML file, or even a .NET ASPX file if you were serving the client portion from a separate
IIS server.

Include the web resources

Include the following script and link tags in your page's head section to include the necessary
Web Document Viewer and Web Capture code and dependencies.

HTML

<!-- Script includes for Web Viewing -->
<script src="WebDocViewer/jquery-1.7.1.min.js" type="text/javascript"></script>
<script src="WebDocViewer/atalaWebDocumentViewer.js" type="text/javascript"></script>

<!-- Style for Web Viewer -->
<link href="WebDocViewer/atalaWebDocumentViewer.css" rel="Stylesheet" type="text/css" />

<!-- Script includes for Web Capture -->
<script src="WebCapture/atalaWebCapture.js" type="text/javascript"></script>

Configure the controls

The web scanning and web viewing controls need to be initialized and configured to set up
connections to the right handlers, specify behavior for events, and so forth. This can be done
with another block of JavaScript, either included or pasted directly within your page's head
somewhere below the included dependencies.

JavaScript

<script type="text/javascript">
// Initialize Web Scanning and Web Viewing
$(function() {

try {
var viewer = new Atalasoft.Controls.WebDocumentViewer({

parent: $('.atala-document-container'),
toolbarparent: $('.atala-document-toolbar'),
serverurl: 'WebDocViewerHandler'

});

Atalasoft.Controls.Capture.WebScanning.initialize({
handlerUrl: 'WebCaptureHandler',
onUploadCompleted: function(eventName, eventObj) {

if (eventObj.success) {
viewer.OpenUrl("atala-capture-upload/" + eventObj.documentFilename);
Atalasoft.Controls.Capture.CaptureService.documentFilename =

eventObj.documentFilename;
}

},
scanningOptions: { pixelType: 0 }

});

Atalasoft.Controls.Capture.CaptureService.initialize({
handlerUrl: 'WebCaptureHandler'

});
}
catch (error) {

alert('Thrown error: ' + error.description);
}

});
</script>

Note that the URL for the WebDocViewer handler is specified once and the URL for the
WebCapture handler is specified twice, since two capture services must be initialized.

- 14 -

Web Scanning

There are several additional options and handlers that can be specified in the initialization
routines for web scanning and viewing. See Client API Reference for the available handlers and
options, and Initializing the Control on the Client for a more complete initialization example.
The web scanning demos included with JoltImage also include more complete examples.

This example represents the minimal configuration necessary for web scanning with an integ-
rated document viewer.

Add the UI

Add the following HTML to your project to create a basic viewer UI. This includes the Web
Document Viewer, drop-down boxes to choose scanners, content types, and document types,
and buttons to drive the UI. See Connecting to UI Controls for more information on the avail-
able web scanning components that can be exposed in the UI. The web scanning demos
included with JoltImage also include more complete examples.

HTML

<p>Select Scanner:
<select class="atala-scanner-list" disabled="disabled" name="scannerList" style="width:

22em">
<option selected="selected">(no scanners available)</option>

</select>
</p>
<p>Content Type:
<select class="atala-content-type-list" style="width:30em"></select>

</p>
<p>Document Type:
<select class="atala-content-type-document-list" style="width:30em"></select>

</p>
<p>
<input type="button" class="atala-scan-button" value="Scan" />
<input type="button" class="atala-import-button" value="Import" />

</p>
<div>
<div class="atala-document-toolbar" style="width: 670px;"></div>
<div class="atala-document-container" style="width: 670px; height: 500px;"></div>

</div>

Wrapping up

Your project should be ready to deploy to an application server.

Web server considerations

The scanning control in JoltImage is compatible with Internet Explorer, Mozilla Firefox, and
Google Chrome.

File Purpose

Kofax.WebCapture.Installer.msi Scanning client for all browsers

If you are using Eclipse, and you do not have a web.xml in your WebContent/WEB-
INF directory, then you can create it by opening the context menu on the Deployment
Descriptor object in your Project Explorer, and selecting the"Generate Deployment
Descriptor Stub" menu item. This will cause a default web.xml to be generated for you and
placed in WEB-INF.

Deploying to an application server

Export your web project to a WAR (Web Archive) file. Internally, this archive should include
the compiled class for your web handler, your client-side JSP file, client-side

- 15 -

Chapter 3

Web Document Viewer resources, and the JoltImage SDK (JoltImage.jar and its depend-
encies).

Import the WAR file into your J2EE application server. If you encounter problems with
deployment, consult the error logs provided by your server. Detailed instructions are provided
for some application servers below.

GlassFish Server 3.1

Access the GlassFish Admin Console and navigate to Applications. By default, the Admin
Console can be accessed at http://myglassfishserver:4848.

Press the Deploy button, select Packaged File to Be Uploaded to the Server as the Location,
and browse for your application's WAR file.

All default settings for Web Application are adequate unless you have special requirements.
Press the OK button the complete deployment.

In case of problems, error logs are located in <glassfishDir>/glassfish/-
domains/<domain>/logs. The log will include exceptions thrown by JoltImage or the Java
class loader.

Troubleshooting

See Troubleshooting Web Capture Handlers for tips on dealing with various problems that
might crop up trying to build and deploy your web capture project.

- 16 -

Web Scanning Server Reference

Web Scanning Server Reference
The following sections cover the server-side handlers for displaying and processing scanned
documents. This also includes sections on forwarding documents to remote services such as
Kofax Import Connector and SharePoint.

Troubleshooting Web Capture Handlers 18

Extending the WebCaptureRequestHandler 20

Connecting to SharePoint 23

Extending the KicHandler 25

Connecting to Kofax Import Connector (KIC) Web Services 26

Configuring Kofax Import Connector (KIC) 27

- 17 -

Chapter 3

Troubleshooting Web Capture Handlers
If you have difficulty getting web capture projects to run, consider using a tool like Fiddler
Web Debugger, which allows you to monitor the HTTP requests and responses that pass
between the web scanning controls, and the handlers on the back-end. Exceptions in your
handlers will present as 500 errors and will likely contain the exception information embed-
ded in the response. Other errors in your handlers will present as JSON data in the response
that does not contain the data you expect.

Remember, when implementing a web capture handler, all of the data returned from the
methods you override is converted into an equivalent JSON representation. Examining the
JSON is an easy way to verify outside of the debugger that you are returning the right data.

Client errors will usually present as JavaScript errors. Use your browser's equivalent of F12
tools to access the JavaScript console to check for errors. The most likely source of errors is
not correctly including all of the necessary web resources, not initializing the controls cor-
rectly, or running your page in an incompatible browser. See Troubleshooting Web Scanning
Problems for more client-side troubleshooting tips.

No documents appear in the Web Document Viewer after scanning

If you have successfully deployed your application to an application server with a Web
Document Viewer, but the viewer does not appear to work, then the web document viewer
handler may be failing and returning an HTTP 500 code. Use a tool such as
Fiddler Web Debugger to see if this is the case. Check the error logs provided by your applic-
ation server for more detailed information.

For GlassFish servers, the default location for your logs is C:\glassfish3\glassfish\-
domains\<your_domain>\logs\server.log, where GlassFish has been installed to
C:\glassfish3.

If the handler is returning an HTTP 200 code and there is no image, examine the JSON
returned in the response. It may contain a key-value pair such as: "error":"There was a prob-
lem with your license..."

If this is the case, an SDK license is required, but has not been properly applied to your hand-
ler. See Licensing JoltImage for more information.

Another reason for not seeing anything is that you forgot to create the upload directory in
which scanned images are sent for viewing.

The server logs contain NoClassDefFoundErrors after loading the application

In general, these errors indicate a required JAR file is missing.

If you see messages such as:

l java.lang.NoClassDefFoundError: com/sun-
/media/imageio/plugins/tiff/TIFFImageReadParam

l java.lang.NoClassDefFoundError: Could not initialize class com.atalasoft.ima-
ging.codec.RegisteredDecoders

This indicates that the Java Advanced Image (JAI) jars were not loaded correctly. The lib-
raries jai_core.jar, jai_codec.jar, and jai_imageio.jar must be available on the classpath that
your application server uses for deployed applications. Places to try sticking these files
includes:

- 18 -

Web Scanning Server Reference

l In the lib/ext directory of your active JRE.

l In the lib/ext directory of your application domain (GlassFish).

If you see messages such as:

l java.lang.NoClassDefFoundError: com/atalasoft/ima-
ging/webcontrols/WebDocumentRequestHandler

This indicates that you have not included the JoltImage.jar library with your WAR package,
or have not included it correctly.

If you see messages such as:

l java.lang.ClassNotFoundException: org.bouncycastle.crypto.Digest

This indicates that you have not included the necessary dependencies packaged with
JoltImage in your WAR package, or have not included them correctly.

The server logs contain AtalasoftLicenseExceptions after loading the application

If you see messages such as:

l com.atalasoft.licensing.AtalasoftLicenseException: There was a problem with your
license...

This indicates a problem with licensing for your viewer or capture handlers. Licensing can fail
for a variety of reasons. Sometimes a specific reason will be given for the failure, such as a
license version that is too old, an expired evaluation, or activating a license for the wrong
product. A more generic licensing error usually indicates that the license string or file was
invalid, or that you did not try to activate any licensing at all.

Make sure you are trying to activate the right license for web capture. Capture handlers
such as KicHandler, SharepointHandler, and WebCaptureRequestHandler require
a license containing an <assembly> tag with the value:

webcapture.WebCaptureProduct

A license that only contains imaging.ImagingProduct will activate the web document
viewer, but not the capture handlers. Activating a license without either of these assembly
values will have no effect at all on viewing or capture.

See Licensing JoltImage for more information on activating a license.

- 19 -

Chapter 3

Extending the WebCaptureRequestHandler
Follow these instructions if you just need a basic capture uploader or need to interface with a
custom connector. If connecting to KIC (Kofax Import Connector) Web Service is desired
please follow the instructions in Extending the KIC Handler, and Connecting to KIC.

1. Open your web project in Eclipse or other IDE.

2. Add a new Java source file to represent your extended handler..

3. Extend the class that was just created with the WebCaptureRequestHandler found
in com.atalasoft.imaging.webcontrols.capture package. It should resemble the fol-
lowing:

Java

package com.mydomain.myproject;

import javax.servlet.annotation.MultipartConfig;
import com.atalasoft.imaging.webcontrols.capture.WebCaptureRequestHandler;

/** */
@MultipartConfig
public class MyWebRequestHandler extends WebCaptureRequestHandler {

private static final long serialVersionUID = 1L;

static {
// Licensing code - see Licensing JoltImage

}
}

4. Override WebCaptureRequestHandler methods that are relevant to the application.
For example:

- 20 -

Web Scanning Server Reference

Java

package com.mydomain.myproject;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.Dictionary;
import java.util.Hashtable;
import java.util.List;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import com.atalasoft.imaging.webcontrols.capture.WebCaptureRequestHandler;

/** */
@MultipartConfig
public class MyWebRequestHandler extends WebCaptureRequestHandler {

private static final long serialVersionUID = 1L;

static {
// Licensing code - see Licensing JoltImage

}

/** */
@Override
protected final ArrayList<String> getContentTypeList(HttpServletRequest request,

HttpServletResponse response) {
List<String> list = Arrays.asList(new String[] { "b1", "b2", "b3" });
return new ArrayList<String>(list);

}

/** */
@Override
protected final List<Dictionary<String,String>> getContentTypeDescription

(HttpServletRequest request,
HttpServletResponse response, String contentType) {

if (contentType.equals("b1"))
{

return new ArrayList<Dictionary<String, String>>
(createDocumentClassDictionaryList(new String[] { "d1-1", "d1-2", "d1-3" }));

}
else if (contentType.equals("b2"))
{

return new ArrayList<Dictionary<String, String>>
(createDocumentClassDictionaryList(new String[] { "d2-1", "d2-2", "d2-3" }));

}
else if (contentType.equals("b3"))
{

return new ArrayList<Dictionary<String, String>>
(createDocumentClassDictionaryList(new String[] { "d3-1", "d3-2", "d3-3" }));

}
else
{

return super.getContentTypeDescription(request, response, contentType);
}

}

private ArrayList<? extends Dictionary<String, String>>
createDocumentClassDictionaryList(

String[] docList) {
ArrayList<Dictionary<String, String>> list = new ArrayList<Dictionary<String,

String>>();
for (String doc : docList) {

- 21 -

Chapter 3

Dictionary<String, String> d = new Hashtable<String, String>();
d.put("documentClass", doc);
list.add(d);

}
return list;

}
}

- 22 -

Web Scanning Server Reference

Connecting to SharePoint

Limitations of the SharepointHandler

l Sub-sites are not supported.

l Folder navigation is not currently supported, documents will only be imported into the
top.

l Document libraries are currently the only type of Sharepoint list that importing a doc-
ument into is supported for.

l Setting additional fields other than the title, and name for specific list ContentTypes is
not supported.

Adding a Sharepoint Handler to a Project

These are the basic steps to add a Sharepoint handler to your application.

For more in-depth instructions on working with web capture and all of its required com-
ponents, refer to the Web Capture Guide. You can replace the instructions for writing your
own capture handler with the instructions to extend and configure the Sharepoint handler.

General Setup

l Create or open a Dynamic Web Porject in Eclipse.

l Add JoltImage.jar and other dependencies to your project.

l Add JoltImage.jar to the Deployment Assembly section of your project.

l Add licensing information to the project.

l Make any servlet configuration changes necessary.

Adding The Handler

l Add a new class to your project.

l Extend the new class from the SharepointHandler class.

l Add any additional authentication or handler logic if you need it.

Adding The Client

l Add the WebDocViewer client files and handler to your project.

l Modify the client .html or .jsp to point to the correct WebDocViewer and Sharepoint
handler URLs.

Refer to the included WebCaptureDemo for an already configured client and servlet config.
The demo's client .jsp file will need to be modified to point to the SharepointHandler for its
capture handler instead of another capture service.

Extending and Configuring SharepointHandler

The SharepointHandler needs to be extended to handle SharePoint authentication and to con-
figure the servlet. The minimum required configuration that must be specified is the
SharepointWsdlLocation for connecting with SharePoint Web services.

By default, SharepointHandler expects to find documents to import in a directory called
'atala-capture-upload' in the root of your web project. If you want to change this location, spe-
cify an atala_uploadpath init-param proeprty on the servlet.

- 23 -

Chapter 3

If your SharePoint server requires authentication, then you must also override the handler's
CreateAuthenticationSession method to return an appropriate Cre-
dentialAuthenticationSession with the user account you will connect as. If you have more
advanced authentication requirements, you can extend AuthenticationSession with your own
custom authentication logic, and return an instance of that instead.

The following example shows a typical configured Sharepoint handler.

Java

package com.mydomain.myproject;

import javax.servlet.annotation.MultipartConfig;
import javax.servlet.annotation.WebInitParam;
import javax.servlet.annotation.WebServlet;

import com.atalasoft.imaging.webcontrols.capture.SharepointHandler;
import com.atalasoft.imaging.webcontrols.capture.authentication.AuthenticationSession;
import
com.atalasoft.imaging.webcontrols.capture.authentication.CredentialAuthenticationSession;

/** */
@MultipartConfig
@WebServlet(

name = "SharepointHandler",
urlPatterns = "/sharepointhandler/*",
initParams = {

@WebInitParam(name = "SharepointWsdlLocation", value = "http://mysp2010server.com/_
vti_bin"),

}
)
public class DefaultSharepointHandler extends SharepointHandler
{

private static final long serialVersionUID = 1L;

static {
// Licensing code - see Licensing JoltImage

}

@Override
protected AuthenticationSession createAuthenticationSession () {

return new CredentialAuthenticationSession("MYDOMAIN", "myuser", "password");
}

}

Certificates

By default, only valid certificates can be used to successfully connect the handler to Share-
point over a secure connection.

- 24 -

Web Scanning Server Reference

Extending the KicHandler
1. Open your web project in Eclipse or other IDE.

2. Add a new Java source file to represent your extended handler..

3. Extend the class that was just created with the KicHandler found in com.atalasoft.ima-
ging.webcontrols.capture package.

For example:

Java

package com.mydomain.myproject;

import javax.servlet.annotation.MultipartConfig;
import com.atalasoft.imaging.webcontrols.capture.KicHandler;

/** */
@MultipartConfig
public class MyKicHandler extends KicHandler {

private static final long serialVersionUID = 1L;

static {
// Licensing code - see Licensing JoltImage

}
}

- 25 -

Chapter 3

Connecting to Kofax Import Connector (KIC) Web Services
These instruction are for configuring an application to connect to an existing KIC server.

For information on configuring KIC itself, see Configuring Kofax Import Connector (KIC).

Specifying the KIC Endpoint

The KicHandler will connect to KIC through a web services endpoint defined in a WSDL file
provided by the KIC server. The location to the WSDL file must be specified in a
WebInitParam annotation within your handler's WebServlet annotation, or in an init-
param tag within your handler's web.xml servlet tag.

Examples are provided below for both configuration styles. The examples also include the
necessary configuration to map your handler to a public URL.

Java - Configuring Servlet in Class Definition

@WebServlet(
name = "KicHandler",
urlPatterns = "/kichandler",
initParams = {

@WebInitParam(name = "KicWsdlLocation", value =
"<http>://<server>:<port>/file/import.wsdl"),

}
)

XML - Configuring Servlet in web.xml

<servlet>
<servlet-name>KicHandler</servlet-name>
<servlet-class>com.mydomain.mypackage.MyKicHandler</servlet-class>
<init-param>
<param-name>KicWsdlLocation</param-name>
<param-value><http>://<server>:<port>/file/import.wsdl</param-value>

</init-param>
</servlet>
<servlet-mapping>
<servlet-name>KicHandler</servlet-name>
<url-pattern>/kichandler</url-pattern>

</servlet-mapping>

Modify the KicWsdlLocation value to point to the actual location of import.wsdl on your
KIC server. Replace <http>, <server>, and <port> with values appropriate for your
KIC server. If the WSDL file is not provided at the default location, ask your
KIC administrator for assistance.

- 26 -

Web Scanning Server Reference

Configuring Kofax Import Connector (KIC)
This is not meant to be a full set of instructions on installing, setting up , and maintaining a
KIC (Kofax Import Connector) server, but instead meant to provide the minimum amount of
configuration needed for the JoltImage Web Scanning Control to successfully connect, and
import into KIC.

For information on connecting to an already configured KIC server, see Connecting to Kofax
Import Connector (KIC) Web Services.

Required KIC License:

For the KIC webserver to accept documents imported from the JoltImage assembly, a "KIC –
Electronic Documents – Web Service interface"

license must be installed on your KIC server. To verify that the correct minimum license has
been installed go to the Message Connector Monitor, which by default is located on the KIC
server at https://localhost:25086/file/index.html where under the “Status->license” section
this should be seen:

Configuring the KIC Web Service:

The JoltImage Web scanning control connects via KIC’s web service via a server-side handler
that extends the KicHandler found in the Atalasoft.dotImage.WebControls assembly. To con-
figure KIC’s web service start by going into the KIC Message Connector Configuration (Start-
>All Programs->Kofax->KIC Electronic Documents->Message Connector Configuration).
Once in the message connector, go to the “General” section, and verify that the “Own Com-
puter Name” field is filled in with the current server’s domain qualified name. For example:

Next go to the “Web-Service Input section. If only a HTTP based connection is desired set the
HTTPS port to 0. For example,

- 27 -

https://localhost:25086/file/index.html

Chapter 3

This will be the port which the endpoint in the applications web.config will point to. If
HTTPS is desired, then enter the port which will be used. If HTTPS is enabled the HTTP port
will not be able to be connected to, and the endpoint in the application’s web.config will need
to point at the URL using the HTTPS port. Once all of the desired changes to the KIC Mes-
sage Connector have been made save, and restart the Message Connector service.

Configuring the Electronic Documents plugin

In the Kofax Capture (KC) Administration application, open the ‘Electronic Documents->Con-
figuration’ window, and configure the necessary Connections, and Destinations.

- 28 -

Web Scanning Server Reference

Once finished stop, and start the service.

Testing the configuration:

To test that the KIC server has been minimally configured correctly in a browser either on the
server, or at a client that might connect to the server enter the following URLs (all on one line
of course):

HTTP enabled webservice:

http://[kic_servername]:[http_port]/soap/tsl/Import?<OwnerReference>myref</OwnerReference>
<Address>importaddr</Address><Part><ContentType>text/plain</ContentType>
<Content><Text>hello</Text></Content></Part>

HTTPS enabled webservice:

https://[kic_servername]:[https_port]/soap/tsl/Import?<OwnerReference>myref</OwnerReference>
<Address>importaddr</Address><Part><ContentType>text/plain</ContentType>
<Content><Text>hello</Text></Content></Part>

If the KIC server is correctly configured the response should look like:

- 29 -

Chapter 3

Web Scanning Client Reference
The following sections cover all aspects of the JoltImage Web Scanning Control. This includes
adding the control to a web page, configuration, connecting to server-side handlers, and
troubleshooting.

Initializing the Control on the Client 31

Connecting to UI Controls 34

Filtering Selection Lists 36

Connecting Controls With No UI 37

Importing Loose Pages 38

Batch Fields 39

Working with Index Fields 41

Handling Events 43

Handling Errors 46

Setting Scanning Options 50

Connecting to the Web Document Viewer 56

Using VirtualReScan (VRS) 58

Testing Your Application 59

Troubleshooting Web Scanning Problems 60

Uninstalling Web Capture MSI 62

Client API Reference 63

- 30 -

Web Scanning Client Reference

Initializing the Control on the Client
On the page of your web application that will support scanning, you need to include the web
capture javascript, and initialize scanning and upload/import.

Including WebCapture Javascript

Add the needed includes in the <head/> section of the document, like this:

<script src="jquery-1.7.1.min.js" type="text/javascript"></script>
<script src="atalaWebCapture.js" type="text/javascript"></script>

If you placed the web capture resources in a subfolder under your application, you will need
to modify the src attribute to the appropriate relative path.

Initializing

There are two parts of the control that need to be initialized, both can be initialized in the
same script tag.

Initializing Scanning

Scanning is initialized with a call to:

Atalasoft.Controls.Capture.WebScanning.initialize({params})

This function takes a comma-separated list of arguments including the URL of the handler
used on the server, event handlers, scanning options sent to the control, and error handling
for the client. All of the arguments are optional except the URL of the server handler.

See Client API Reference for details.

Initializing the KIC (Kofax Import Connector) Connection

The connection to the KIC server is initialized with a call to:

Atalasoft.Controls.Capture.CaptureService.initialize({params})

This needs to be called in addition to the WebScanning.initialize function to populate any cli-
ent UI controls with KIC contentTypes, and contentTypeDescriptions. It requires a handler
argument, and accepts optional custom error handlers. When no selection dropdowns, or
other selection UI is desired values for the required contentType, and con-
tentTypeDescriptionName are also set in the parameter list.

Example

The following example script shows both these objects being initialized:

- 31 -

Chapter 3

Code Snippet

<script type="text/javascript">
// Initialize Web Scanning and Web Viewing
$(function() {

try {

Atalasoft.Controls.Capture.WebScanning.initialize({
handlerUrl: 'KicWebCaptureHandler.ashx',

onScanError: function(msg, params) { appendStatus(msg); },
onScanStarted: function(eventName, eventObj) { appendStatus('Scan Started');

},
onScanCompleted: function(eventName, eventObj) { appendStatus('Scan

Completed: ' + eventObj.success); },

onUploadError: function(msg, params) { appendStatus(msg); },
onUploadStarted: function(eventName, eventObj) { appendStatus('Upload

Started'); },
onUploadCompleted: function(eventName, eventObj) {

appendStatus('Upload Completed: ' + eventObj.success);
if (eventObj.success) {
viewer.OpenUrl('atala-capture-upload/' + eventObj.documentFilename);

}
},
scanningOptions: { pixelType: 0 }

});

Atalasoft.Controls.Capture.CaptureService.initialize({
handlerUrl: 'KicWebCaptureHandler.ashx',

 onError: function(msg, params) { appendStatus(msg +': ' +
params.statusText); }

});
}
catch (error) {

//Do something with the error caught. Default is to just go
//to the javascript error console in the browser.

}
});

</script>

Example when no contentType, or contentTypeDescription UI is desired:

- 32 -

Web Scanning Client Reference

Code Snippet

<script type="text/javascript">
// Initialize Web Scanning and Web Viewing
$(function() {

try {
Atalasoft.Controls.Capture.WebScanning.initialize({

handlerUrl: 'KicWebHandler.ashx',

onScanError: function(msg, params) { appendStatus(msg); },
onScanStarted: function(eventName, eventObj) { appendStatus("Scan Started");

},
onScanCompleted: function(eventName, eventObj) {
appendStatus("Scan Completed: " + eventObj.success); },

onUploadError: function(msg, params) { appendStatus(msg); },
onUploadStarted: function(eventName, eventObj) { appendStatus("Upload

Started"); },
onUploadCompleted: function(eventName, eventObj) {

appendStatus("Upload Completed: " + eventObj.success);
if (eventObj.success) {

appendStatus("atala-capture-upload/" + eventObj.documentFilename);
viewer.OpenUrl("atala-capture-upload/" + eventObj.documentFilename);
Atalasoft.Controls.Capture.CaptureService.documentFilename =

eventObj.documentFilename;
}

},
scanningOptions: { pixelType: 1}

});

Atalasoft.Controls.Capture.CaptureService.initialize({
handlerUrl: 'KicWebHandler.ashx',
//The required BatchClassName.
contentType: 'AtalasoftEngineering',
//The ContentTypeDescriptionName must be in the form of
//'DocumentClassName / FormType'.
contentTypeDescriptionName: 'PointOfOrigin / ClaimForms',
onError: function(msg, params) { appendStatus(msg +": " +

params.statusText); },
onImportCompleted: function(params) { appendStatus(params.id +": " +

params.status); },
onTrackStatusReceived: function(params) {appendStatus("Import status: "+

params); }
});

}
catch (error) {

appendStatus("Thrown error: " + error.description);
}

});
</script>

- 33 -

Chapter 3

Connecting to UI Controls
The Web Scanning control automatically finds and connects to UI controls using their
class="" identifiers, so it is sufficient for you to add, lay out and style the UI controls
required by your application, and assign the appropriate classes to those controls.

The four classes are: atala-scan-button, atala-scanner-list, atala-content-type-list and atala-
content-type-document-list.

Examples:

1. A “Scan” button:

<input type="button" class="atala-scan-button" value="Scan" />

This button will automatically be enabled when scanning is possible, and disabled otherwise.
When the user clicks this button, a scan is initiated with current scanner and document selec-
tions.

2. Scanner Device List:

<select class="atala-scanner-list" disabled="disabled" name="scannerList" style="width:
194px">
<option selected="selected">(no scanners available)</option>

</select>

This control is loaded with the list of available TWAIN devices, and the current visible selec-
tion will be used when a scan is initiated.
If scanning is not possible or there are no scanners available, this control will be disabled.

3. KIC Content Types & Sharepoint Document Libraries:

<select class="atala-content-type-list" style="width:385px"></select>

This control is automatically loaded with the list of available content types provided by the
KIC server, and the current visible selection is used when an import is initiated.
If a connection cannot be established to the KIC server, this control is disabled.

4. KIC Content Type Descriptions & Sharepoint List Content Types:

<select class="atala-content-type-document-list" style="width:385px"></select>

This control is automatically loaded with the list of available content type descriptions
as provided by the KIC server, and the current visible selection is used when a scan is ini-
tiated.
If a connection cannot be established to the KIC server, this control is disabled.

5. KIC & Sharepoint Import Button:

<input type="button" class="atala-import-button" value="Import" />

This button is automatically enabled if KIC import is possible, and is disabled otherwise.
When the user clicks it, a KIC import (of the last scanned document) is initiated.

6. KIC & Sharepoint Track Import Button:

<input type="button" class="atala-track-import-button" value="Track Import" />

When the user clicks it, the status of the last import is returned.

7. KIC & Sharepoint IndexFields:

<div class="atala-indexfield-list" style="width:600px; height:250px; overflow:scroll; bor-
der:solid 1px #CCC;"></div>

- 34 -

Web Scanning Client Reference

A table will with the index fields names for a label, and a text input will be constructed at
this div.

8. KIC Batch Fields:

<div class="atala-batchfield-list" style="width:600px; height:250px; overflow:scroll; bor-
der:solid 1px #CCC;"></div>

A table with the batch fields names for a label, and a text input will be constructed at this
div.

9. KIC & Sharepoint Import With Index Fields Button:

<input type="button" class="atala-import-index-field-button" value="Import with
IndexFields" />

This button is automatically enabled if import is possible, and is disabled otherwise.
When the user clicks it, an import (of the last scanned document) along with any entered
index field values into KIC or Sharepoint is initiated.

*One should also note, that any "button" that has a type="submit" will create an empty
POST that will override any POST or GET that the web scanning control sends.

- 35 -

Chapter 3

Filtering Selection Lists
To filter the lists displayed in the atala-contentype-list, and atala-contenttype-document-list
use the removedContenTypes, and removedContentTypeDescriptions initialization parameter.

Example:

Atalasoft.Controls .Capture.CaptureService.in itial ize({

handlerUr l: 'KicWebHandler .ashx',

loosePages: "true",

removedContentTypes: "KfxSingleMessageBatch",

removedContentTypeDescr iptions: "KfxMultiDocument / NWestMulti",

onError: function(msg, params) { appendStatus(msg + ": " + param-
s.s tatusText); },

});

- 36 -

Web Scanning Client Reference

Connecting Controls With No UI
When using the client controls to connect to Kofax Capture (KC) through Kofax Import Con-
nector (KIC) or SharePoint, and it is not desired to have the content type/repository name
selection boxes on the page, then a selected value can be passed through the capture service's
initialize parameters.

Example:

Atalasoft.Controls .Capture.CaptureService.in itial ize({

handlerUr l: 'KicWebHandler .ashx',

contentType: 'AtalasoftEngineer ing ',

batchFields: "BatchField1:value1, BatchField2:value2",

contentTypeDescr iptionName: 'Engineer ing / TestDocument',

indexFields: "IndexField1: value1, IndexField2: value2",

onError: function(msg, params) { appendStatus(msg + ": " + param-
s.s tatusText); },

});

At a minimum the contentType must be specified for all document imports into KC through
KIC. For Sharepoint a value for the contentType, and contentTypeDescriptionName must be
entered for the import to be successful.

- 37 -

Chapter 3

Importing Loose Pages
When connecting to Kofax Capture (KC) via the Kofax Import Connector (KIC) a loose page
can be imported by not selecting or specifying a document class/ form type combination
when importing a document via the web scanning client, and by having the loosePages ini-
tialization parameter set to true. By default this parameter is set to 'false'. When set to 'true'
by default a blank option will be added to the atala-contenttype-document-list (when avail-
able).

Example:

With UI:

Atalasoft.Controls .Capture.CaptureService.in itial ize({

handlerUr l: 'KicWebHandler .ashx',

loosePages: "true, Loose Page: Test",

onError: function(msg, params) { appendStatus(msg + ": " + params.s tatusText);
},

onImportCompleted: function(params) { appendStatus(params.id + ": " + param-
s.s tatus); }

});

Note: with UI assumes that batch fields will be displayed, along with the atala-contenttype-
list, and atala-contenttype-document-list.

Without UI:

Atalasoft.Controls .Capture.CaptureService.in itial ize({

handlerUr l: 'KicWebHandler .ashx',

contentType: 'AtalasoftEngineer ing ',

batchFields: "BatchField1:123, BatchField2:321",

contentTypeDescr iptionName:' ' ,

loosePages: "true",

onError: function(msg, params) { appendStatus(msg + ": " + params.s tatusText);
}

});

- 38 -

Web Scanning Client Reference

Batch Fields
Batch Fields are much like index fields. They have the same hidden, and required class asso-
ciated with them, and can be used to add meta data to loose pages imports into Kofax Cap-
ture. See Working With IndexFields.

NOTE: SharePoint does not have an equivalent concept to batch fields, and therefore cannot
be used when importing documents into SharePoint.

Displaying and entering values:

Batch fields get displayed in the same <div>as index fields. See instructions on adding the
index field <div> to a page: Connect UI Controls.

Filtering the displayed list:

To filter the batchfields that get displayed in the client page UI specify the batch fields to be
displayed by setting the displayedBatchFields parameter.

Example:

Atalasoft.Controls .Capture.CaptureService.in itial ize({

handlerUr l: 'KicWebHandler .ashx',

contentType: 'AtalasoftEngineer ing ',

d isp layedBatchFields: "BatchField1, BatchField2",

onError: function(msg, params) { appendStatus(msg + ": " + param-
s.s tatusText); },

onImportCompleted: function(params) { appendStatus(params.id + ": " + param-
s.s tatus); },

});

In the example above only BatchField1, and BatchField2 would be displayed in the generated
table.

Setting values through the initialize parameter list:

When no indexfield div has been added to a page, but batch field values still need to be set
they can be passed through the capture service's initialize method.

Example:

Atalasoft.Controls .Capture.CaptureService.in itial ize({

handlerUr l: 'KicWebHandler .ashx',

contentType: 'AtalasoftEngineer ing ',

batchFields: "BatchField1:value1, BatchField2:value2",

onError: function(msg, params) { appendStatus(msg + ": " + param-
s.s tatusText); },

});

In the above example the two batch fields (BatchField1, and BatchField2) for the
AtalasoftEngineering batch class have each had a value set. The batchFields parameter takes
a string where each bath field name value pair are comma separated, and the batch field
name, and value are colon separated.

- 39 -

Chapter 3

Batch Field Validation:

There are two capture service initialization parameters that can be used to handle batch field
validation on the client. There is the error handling event, onBatchFieldIm-
portValidationError, and the custom client validation parameter, onBatchFieldTypeVal-
idationStatus.

Example:

Atalasoft.Controls .Capture.CaptureService.in itial ize({

handlerUr l: 'KicWebHandler .ashx',

contentType: 'AtalasoftEngineer ing ',

onError: function(msg, params) { appendStatus(msg + ": " + param-
s.s tatusText); },

onImportCompleted: function(params) { appendStatus(params.id + ": " + param-
s.s tatus); },

onTrackStatusReceived: function(params) { appendStatus("Import s tatus: " +
params); },

onBatchFieldImportValidationError: function(params) { appendStatus("BatchField
Validation Error:" + params); },

onBatchFieldTypeValidationStatus: function(params) { customValidationFunction
(params); }

});

- 40 -

Web Scanning Client Reference

Working with Index Fields
Index Field List Filtering:

As part of the Atalasoft.WebScanning.CaptureService.Initialize's list of parameters that get
passed in includes a mechanism to provide a list of the index fields that should be displayed
in the generated table of index fields.

Example:

Atalasoft.Controls.Capture.CaptureService.initialize({
handlerUrl: 'SharepointDemoHandler.ashx',
onError: function(msg, params) { appendStatus(msg + ": " + params.statusText); },
onImportCompleted: function(params) { appendStatus(params.id + ": " + params.status);
},
onTrackStatusReceived: function(params) { appendStatus("Import status: " + params); },
displayedIndexFields: 'Name, Title, Content Type'
});

In the above example the parameter "displayedIndexFields" specifies the list of index field
that should be included for display. Only the index fields with named: "Name", "Title", and
"Content type" will be displayed.

Required Fields:

Both KIC, and Sharepoint have required index fields that need to be set for an import of a doc-
ument into them to be successful. When the list of index fields is retrieved from the server the
required field information is included with that information, and a class is added to the label
of that index field. The class that gets added is:

class="atala-indexfield-required"

An example that shows how to use this class to add an asterisk to the beginning of the label
can be found in the WebCapture demo included with the installation.

Hidden Fields:

Index fields in KC have an optional flag called hidden, when this is set to "true" in KC the
field that it is applied to will have the following class applied to it:

class="atala-field-hidden"

Setting Index Field Values with out Connecting to UI:

As with content types, and content type descriptions indexfields can also be passed in
through to the import POST parameters via the Atalasoft.Con-
trols.Capture.CaptureService.initialize call.

Example:

Atalasoft.Controls.Capture.CaptureService.initialize({
handlerUrl: 'SharepointDemoHandler.ashx',
contentType: 'Documents',
contentTypeDescriptionName: 'Document',
indexFields: "Name: Adam, Title: Q3 results , Content Type: ",
});

The "indexFields" parameter takes a string where the index fields are comma separated with
the name of the particular index field separated from the value being assigned to it by a ':', so
"indexField1: indexfieldValue1, indexfield2:indexfieldvalue2, ..."

Index Field Validation:

Client Side Validation -

- 41 -

Chapter 3

Any index field value validation beyond checking that required fields have values prior to
import should be handled via the "onIndexFieldTypeValidationStatus" parameter in the
Atalasoft.Controls.Capture.CaptureService.initialize setup.

Example:

Atalasoft.Controls.Capture.CaptureService.initialize({
handlerUrl: 'SharepointDemoHandler.ashx',
contentType: 'Documents',
contentTypeDescriptionName: 'Document',
onError: function(msg, params) { appendStatus(msg + ": " + params.statusText); },
onImportCompleted: function(params) { appendStatus(params.id + ": " + params.status);
},
onTrackStatusReceived: function(params) { appendStatus("Import status: " + params); },
onIndexFieldImportValidationError: function(params) { appendStatus("Index field val-
idation error:" + params); },
onIndexFieldTypeValidationStatus: function(params) { fieldTypeValidation(params); }
});

Where the function fieldTypeValidation(params) is a function elsewhere in the page that per-
forms the additional index field input validation that could be run before importing. An
example of this function is available in the WebCapture demo project included with the
installer.

Server Side Validation -

Validation on the serverside checks that the index field input values are of the correct form for
the culture specified in the web.config, or app.config. By default the handler will use the
default culture of the server.

Handling validation error events in the client -

As with the other import, and track status events index field validation has an onIn-
dexFieldImportValidationError event that can be used to return information to the client in
the case that a input value has been deemed invalid. See the WebCapture demo for an
example.

Skinning the Generated Table:

It's possible to "skin" the generated table of index fields to suit the needs of the design aes-
thetic of the site.

The Generated Table of Index Fields -

Once connected to the UI (see Connecting to UI Controls) a table will be added as a child to
the <div class="atala-indexfield-list"/> with id="atala-indexfield-table" applied to it. The
table has an specific id applied to it as do the index field labels, and input fields. Each input
field will have an id applied to it as well, and will be in the form of id="<indexfieldname>_
inputId"

Required Index Field Values -

Required index field have a class applied to them, class="atala-indexfield-required" for an
example of how to use this to apply a red '*' to the beginning of the label name see the Web
Capture demo included with the installation.

- 42 -

Web Scanning Client Reference

Handling Events
The Atalasoft.Controls.WebScanning control has the following events that can be used in the
client:

l onScanError

l onScanStarted

l onImageAcquired

l onScanCompleted

l onScanClientReady

l onUploadError

l onUploadStarted

l onUploadCompleted

To use one, some, or all of the events add them to the Atalasoft.Con-
trols.WebScanning.initialize method’s argument list. See Client API Reference.

An example where each event is used:

Initializing WebScanning with Event Handlers

try {
Atalasoft.Controls.Capture.WebScanning.initialize({

handlerUrl: 'TestCaptureHandler.ashx',

onScanError: function(msg, params) { appendStatus(msg); },
onScanClientReady: function() { appendStatus('Scan-Client Ready'); },
onScanStarted: function(eventName, eventObj) { appendStatus('Scan Started'); },
onImageAcquire: function(eventName, imageProxy) { appendStatus('Image Acquired'); },
onScanCompleted: function(eventName, eventObj) {

appendStatus('Scan Completed: ' + eventObj.success);
},
onUploadError: function(msg, params) { appendStatus(msg); },
onUploadStarted: function(eventName, eventObj) { appendStatus('Upload Started'); },
onUploadCompleted: function(eventName, eventObj) {

appendStatus('Upload Completed: ' + eventObj.success);
if (eventObj.success) {

viewer.OpenUrl('atala-capture-upload/' + eventObj.documentFilename);
}

}
});

}
catch (error) {

appendStatus("WebScanning initialization error: " + error.description);
}

Handler: onScanError(msg, params)

See Handling Errors

Handler: onScanClientReady()

See Handling Errors

Handler: onScanStarted(eventName, eventObj)

Called when scanning starts.

Note: Always followed by a call to onScanCompleted, even if the scan fails or is aborted.

- 43 -

Chapter 3

Handler: onImageAcquired(eventName, imageProxy)

This handler will be called during scanning each time an image is received from the scanner
and processed by JoltImage.

Note: If blank images are being discarded (the discardBlankPages scanning option has been
set to true), any image that is determined to be 'blank' will be discarded during post-pro-
cessing. This handler is not called for such images.

The 2nd parameter is a 'proxy' object representing the acquired image, with a limited set of
properties and methods that can be used inside the handler.

Note: Do not retain the proxy object outside the onImageAcquired handler, it is not valid
after the handler returns.

imageProxy properties and methods

ImageProxy.discard

If the handler sets imageProxy.discard to true, the image will be discarded when the hand-
ler returns. Use this feature if you are uploading or otherwise disposing of each incoming
image yourself, and do not want JoltImage to collect and upload all the scanned images at
the end of the scan job.

ImageProxy.asBase64String(fmt)

This method returns a base-64 encoded file containing the just-received image, in the file-
format specified by the fmt parameter. The fmt parameter must be either the string 'tif' or
'jpg'. Note that 'jpg' won't work if you are receiving B&W images, because JPEG files can only
hold grayscale or RGB color images.

This method is useful if you want to store or upload each scanned image separately as it
arrives.

Handler: onScanCompleted(eventName, eventObj)

Called when scanning ends, successfully or otherwise.

The eventObj has a property success. If it is true, the scan completed without error.

If eventObj.success is false, the scan was not fully successful, and there will be a string
with more information in eventObj.error.message.

Usually when scanning fails, the onScanError handler will have already been called with a spe-
cific error message.

Handler: onUploadStarted(eventName, eventObj)

Called when an upload begins.

Handler: onUploadError(msg, params)

Called when an error is detected during upload to the server.

The msg parameter will be one of the following:

l Atalasoft.Controls.Capture.Errors.ajax - could not create/initialize the XMLHt-
tpRequest object.

l Atalasoft.Controls.Capture.Errors.serverNotResponding - connection to the
server timed out.

- 44 -

Web Scanning Client Reference

l Atalasoft.Controls.Capture.Errors.uploadError - the params object will contain
three properties: responseStatus, response, and handlerUrl.

Handler: onUploadCompleted(eventName, eventObj)

Called when an upload completes, whether successfully or not.

If the upload was successful, eventObj.success is true, and eventOb-
j.documentFilename contains the unqualified name of the file in the upload directory on
the server.

If the upload failed for some reason, eventObj.success is false. In this case, onUploadError
will have been called to report the error.

- 45 -

Chapter 3

Handling Errors
By default all errors are sent to the javascript console in the browser. However, you can over-
ride this by specifying an error-handling function in the parameters
to Atalasoft.Controls.WebScanning.initialize and Atalasoft.Controls.CaptureService.initialize.
See Client API Reference.

This example shows the basic technique of specifying error-handling functions. There is a
longer code example at the end of this section.

JavaScript

$(function() {
try {

Atalasoft.Controls.Capture.WebScanning.initialize({
handlerUrl: 'TestCaptureHandler.ashx',

onScanError: function(msg, params) { appendStatus(msg); },
onUploadError: function(msg, params) { appendStatus(msg); }

});
}
catch (error) {

appendStatus("WebScanning initialization error: " + error.description);
}

});

function appendStatus(msg) {
$('#status').append('<p>'+msg+'</p>');

}

This will display error messages to a div with id=status.

Handler: onScanError(msg, params)

The JoltImage service can be initialized with a scan error handler (see the Code Example at
the end of this section), and that handler will potentially be called back by JoltImage with
one of various scanning-related errors.

Note: It is essential to a well-functioning web scanning application that you handle at least
the noPlugin and oldPlugin errors.

All WebCapture errors are string members of: Atalasoft.Controls.Capture.Errors

Below are the scanning-related errors currently defined, with an explanation of their cause
and recommendation for proper handling.

Errors.badBrowser

Atalasoft.Controls.Capture.Errors.badBrowser

Fired in:Any unsupported browser

During: Atalasoft.Controls.Capture.WebScanning.initialize

Cause: JoltImage detected that it is running in a browser it does support. Common reasons
JoltImage 10.6 might fire this error:

l The browser is not Internet Explorer, Firefox, or Chrome

l The browser is one of the above, but not a supported version e.g. Internet Explorer 6.0

l The operating system is not Windows.

- 46 -

Web Scanning Client Reference

l The browser is not a 32-bit edition. 64-bit browsers are not supported because TWAIN
support for 64-bit applications is currently almost non-existent.

How to Handle: We strongly recommend that your application display the msg parameter
to the handler, or your own equivalent message. If you also display the value of the params
parameter, which will be a string, it would help a technical support specialist identify the
browser causing the problem.

Errors.noTwain

Atalasoft.Controls.Capture.Errors.noTwain

Fired In: All browsers.

During: Atalasoft.Controls.Capture.WebScanning.initialize

Cause: Support for the TWAIN protocol itself not found on the client computer.

Background: This error is extremely unlikely to happen on a typical end-user PC running
Windows XP, Vista or 7, because retail editions of Windows all include a copy of the TWAIN
manager. However, a user on Windows Server 2008 and perhaps some other Server editions
can be missing TWAIN which will cause this error. Ref:
Using scanners in Windows Server 2008 R2 with TWAIN drivers might require the install-
ation of Desktop Experience Pack.

How to Handle: You could just display the error string (the value of the msg parameter of
the onScanError handler) or display your own message that TWAIN was not found on the
computer.

Errors.noPlugin

Atalasoft.Controls.Capture.Errors.noPlugin

Fired In:All browsers

During: Atalasoft.Controls.Capture.WebScanning.initialize

Cause: The required Web Scanning plugin is either not installed or is disabled.

Background: If the plugin is not installed, Firefox will display a notification like this:

Errors.oldPlugin

Atalasoft.Controls.Capture.Errors.oldPlugin

Fired In: All browsers other than Internet Explorer

During: Atalasoft.Controls.Capture.WebScanning.initialize

Cause: The Web Scanning plugin is installed and enabled but JoltImage is designed to work
with a newer version. For example, JoltImage might require plugin version 1.55, but detect
that the browser has plugin version 1.42 installed. That would cause this error to be fired dur-
ing initialization.

How to Handle: Similar to handling noPlugin above, but there will never be any prompt-
ing by the browser so you must present the user with a button or hyperlink to the correct plu-

- 47 -

http://technet.microsoft.com/en-us/library/ee940564(v=ws.10).aspx
http://technet.microsoft.com/en-us/library/ee940564(v=ws.10).aspx

Chapter 3

gin deployment package on your server. The filename of the appropriate download is passed
to your error handler as params.filename.

Errors.l icensingError

Atalasoft.Controls.Capture.Errors.licensingError

Fired In: All browsers

During: Asynchronously, after Atalasoft.Controls.Capture.WebScanning.initialize()

Cause: When queried, the server did not return the expected JSON licensing information in a
timely fashion.

How to Handle: If you see this during development, it suggests some server configuration
problem, the handlerUrl passed to WebScanning.initialize isn't right, the server is actually off-
line or not accessible, or (maybe, even) the licensing isn't right for JoltImage on the server.

Assuming you resolve any logical problems during development, if this error occurs after
deployment it almost certainly represents a typical "server not responding" error, with all the
usual causes.

Other Errors

Other errors are possible, and additional errors may be added in future updates to JoltImage.
We recommend that you defend against that possibility by displaying the text of the error
(the msg parameter to the onScanError handler) to the user, and offering them as much flex-
ibility as possible - for example, by linking to a troubleshooting & support page that you can
revise based on experience.

Handler: onScanClientReady()

This is a handler which can be passed to WebScanning.initialize alongside the onScanError
handler. See the Code Example at the end of this section.

Called In: All browsers.

During: Atalasoft.Controls.Capture.WebScanning.initialize OR at some later time if the scan-
ning control needed to be downloaded and installed.

Cause: The client-side scanning control or plugin has just been successfully initialized and is
operational. Note that this does not mean that any scanners were detected, working or oth-
erwise, so the Scan button is not necessarily enabled.

Background: Alongside the onScanError handler, you can provide an onScanClientReady
handler that will be called when client scanning services have been successfully
initialized. Remember that the onScanClientReady handler may be called an arbitrarily long
time after the WebCapture initialize call.

How to Handle: This handler is a good place to clear any initialization error messages or
prompts as discussed above. See the code example at the end of this section.

Code Example – Scan Error Handling

See also: Initializing the Control on the Client.

- 48 -

Web Scanning Client Reference

Javascript

function scanErrorHandler(msg, params)
{

appendStatus(msg);
switch (msg) {

case Atalasoft.Controls.Capture.Errors.badBrowser:
promptHTML(
msg + "
(" + params + ")");
break;

case Atalasoft.Controls.Capture.Errors.activeX:
promptText(
"The ActiveX Scanning Control needs to be installed or updated.\n" +
"When prompted, please allow the Kofax Scanning Control to install itself.");
break;

case Atalasoft.Controls.Capture.Errors.noPlugin:
promptHTML(
"The Kofax Web Scanning plugin is not available. "+
"Please follow any prompts to install it, or Click

Here
"+
"If you are not prompted to install, the plugin may "+
"be installed but disabled - please enable it.");
break;

case Atalasoft.Controls.Capture.Errors.oldPlugin:
promptHTML(
"The Kofax Web Scanning plugin is out of date.
"+
"To download and install the latest version "+
"Click Here");
break;

case Atalasoft.Controls.Capture.Errors.noTwain:
promptText(
"TWAIN is not installed on this computer.\n"+
"Contact your system administrator.");
break;

default:
promptText(msg);
break;

}
}

function scanClientReady() {
promptText(""); // Clear the prompt box

}

// Initialize Web Scanning and Web Viewing
Atalasoft.Controls.Capture.WebScanning.initialize({

// designate error handler:
onScanError: scanErrorHandler,
onScanClientReady: scanClientReady,
// etc...

});

- 49 -

Chapter 3

Setting Scanning Options
In the Atalasoft.Controls.WebScanning.initialize method, one of the parameters that can be
passed as an argument is scanningOptions. This is an object whose various properties con-
trol the scanner and the way images are processed after scanning.

Note that not all settings are supported by all scanners - if you use a setting with a scanner
that does not support it, the unsupported setting is simply ignored.

applyVRS

An option to enable or disable VRS post-processing in general.

If you specify applyVRS: false, no VRS processing is performed and all VRS processing
options are ignored.

If you specify only applyVRS: true, then by default you effectively get the following settings:
pixelType: 2, resultPixelType: 0, deskew: true, autoRotate: true, discardBlankPages: false

Default value: true.

Example

Atalasoft.Controls.Capture.WebScanning.initialize({
handlerUrl: 'TestCaptureHandler.ashx',
scanningOptions: { applyVRS: false }

});

autoRotate

Detects the orientation of the text in an image - right-side up, upside-down, sideways - and
rotates the image so the text is upright.

If VRS is disabled, autoRotate is always disabled. If VRS is enabled, autoRotate is enabled by
default but you can disable it with this option.

deskew

Deskew is scanning jargon for 'straighten' - to rotate the scanned image by a few degrees to
correct for the paper being scanned slightly crooked. Different from autoRotate.

If VRS is disabled, deskew is always disabled. If VRS is enabled, deskew is enabled by default
but you can disable it with this option.

Example

Atalasoft.Controls.Capture.WebScanning.initialize(
scanningOptions: { applyVRS: true, deskew: false }

});

disableVRSIfInstalledOnWorkstation

Automatically disable VRS processing if VRS is detected on the client workstation. The idea is
that if VRS is detected on the workstation, the user is probably using a VRS-equipped TWAIN
driver, so there is no need to apply VRS processing twice to each image.

Default value: false.

discardBlankPages

When this option is true, blank images are detected and discarded during scanning.

Note: In duplex scanning, front and back sides of pages are discarded independently.

- 50 -

Web Scanning Client Reference

Note: No ImageAcquired event is fired for such discarded images.

Default value: false.

Example

Atalasoft.Controls.Capture.WebScanning.initialize({
handlerUrl: 'TestCaptureHandler.ashx',
scanningOptions: { duplex: 1, discardBlankPages: true }

});

dpi

Controls the scanning resolution. It stands for dots per inch. It would be very unusual to find
a scanner that doesn't support 100, 200 and 300 DPI. 150 DPI is almost as widely
supported. Nearly all flatbed scanners can scan anything from 50 DPI to 1200 DPI.

Note: The units of this value are always dots per inch, even if the computer, user account or
browser are configured for a metric locale.

Default value: 200.

Example

Atalasoft.Controls.Capture.WebScanning.initialize({
handlerUrl: 'TestCaptureHandler.ashx',
scanningOptions: { dpi: 300} // request 300 DPI scanning

});

duplex

Controls duplex/simplex scanning. The possible values are:

0 = Simplex (front side only)

1 = Duplex (both sides)

-1 = Don’t care (leave up to scanner)

Default value: 0 (Simplex).

All scanners support simplex scanning. Many scanners with an ADF (Automatic Document
Feeder) can scan duplex, but many cannot.

Example

Atalasoft.Controls.Capture.WebScanning.initialize({
handlerUrl: 'TestCaptureHandler.ashx',
scanningOptions: { duplex: -1 }

});

feeder

This option selects between the ADF (Automatic Document Feeder) and the flatbed/glass AKA
the platen

Valid values are: 0 - Scan from platen, 1 - Scan from feeder, -1 - Don't care (up to scanner or
user).

Default value: -1 (Don't care)

- 51 -

Chapter 3

Example

Atalasoft.Controls.Capture.WebScanning.initialize({
handlerUrl: 'TestCaptureHandler.ashx',
scanningOptions: { feeder: 0 }

});

orientation

This parameter tells the scanner the expected orientation of the paper being fed, in the sense
of upright (short edge feed) or sideways/landscape (long edge feed).

Value Name Meaning

-1 Any left up to scanner.

0 Portrait paper is scanned 'upright' (short edge feed)

1 Landscape paper is scanned 'sideways' (long edge feed)

paperSize

To set the paper size being fed in to the scanner.

Default value: 3 (8.5" x 11")

Value Meaning / Dimensions

-1 Indicates 'no preference'

0 TWAIN defines this as meaning 'maximum scan area' but
many scanners will treat this as 'default' or 'last size selected
by the user.'

1 210mm x 297mm

2 182mm x 257mm (Same as JIS B5)

3 8.5" x 11.0"

4 8.5" x 14.0"

5 148mm x 210mm

6 250mm x 353mm (ISO B4)

7 125mm x 176mm (ISO B6)

8 unused
9 11.0" x 17.0"

10 10.5" x 7.25"

11 297mm x 420mm (ISO A3)

12 353mm x 500mm (ISO B3)

13 105mm x 148mm (ISO A6)

14 229mm x 324mm (ISO C4)

15 162mm x 229mm (ISO C5)

16 114mm x 162mm (ISO C6)

- 52 -

Web Scanning Client Reference

Example

Atalasoft.Controls.Capture.WebScanning.initialize({
handlerUrl: 'TestCaptureHandler.ashx',
scanningOptions: { paperSize: 3 }

});

pixelType

Sets the pixel type for scanning. We recommend using resultPixelType instead.

Value Scan Data Format

0 Black and white (1 bit per pixel)

1 Grayscale (8 bits per pixel)

2 RGB (24 bits per pixel)

3 Indexed color (8 bits per pixel)

-1 Don’t care

Default value: 0 (Black & white)

Example

Atalasoft.Controls.Capture.WebScanning.initialize({
handlerUrl: 'TestCaptureHandler.ashx',
scanningOptions: { pixelType: 0 }

});

Every scanner capable of scanning paper documents can scan in Black & White (B&W) mode.
Almost all scanners can scan grayscale and color. Many scanners, but certainly not all, can
scan indexed color.

resultPixelType

This specifies the pixel format for images delivered to your application after scanning and
post-processing.

This is distinct from the pixelType parameter, which controls the pixel format requested
from the scanner.

If resultPixelType is not specified, it defaults to -1.

The pixel format used for scanning is:

1. pixelType if specified.

2. otherwise the pixelType implied by resultPixelType if specified, (see tables below).

3. otherwise if applyVRS is true then Color

4. otherwise: B&W.

applyVRS:true

Value Name Delivered Image
Default
Scan

-2 PixelType.Auto 24-bit color or 1-bit B&W,
chosen by VRS

Color

-1 (default) PixelType.Any 1-bit images (binarized by
VRS)

Color

- 53 -

Chapter 3

applyVRS:true

Value Name Delivered Image
Default
Scan

0 PixelType.BW 1-bit B&W images Color

1 PixelType.Grayscale 8-bit grayscale images Grayscale

2 PixelType.Color 24-bit color images Color

applyVRS:false

Value Name Delivered Image Default Scan

-2 PixelType.Auto as scanned BW

-1 (default) PixelType.Any as-scanned BW

0 PixelType.BW 1-bit B&W images BW

1 PixelType.Grayscale 8-bit grayscale images Grayscale

2 PixelType.Color 24-bit color images Color

Note that when VRS is disabled, resultPixelType can be effectively used in place of
pixelType to control the scanner.

Example

var PixelType = Atalasoft.Controls.Capture.PixelType;
Atalasoft.Controls.Capture.WebScanning.initialize({

// Deliver color images. Implies scanning color.
scanningOptions: { resultPixelType: PixelType.Color }

});

showScannerUI

To show (true), or not show (false) the scanner’s user interface during scanning.

Default value: false.

Example

Atalasoft.Controls.Capture.WebScanning.initialize({
handlerUrl: 'TestCaptureHandler.ashx',
scanningOptions: { showScannerUI: true }

});

suppressBackgroundColor

Only has effect in Auto Color mode i.e. when applyVRS is true and resultPixelType is -2.

In that mode, if suppressBackgroundColor is true, solid-color background in color scans
is treated as white. If there is no other color content on a scanned image, the image will be
automatically converted to B&W.

This is useful when your scan batch may include invoices and other documents printed on
colored paper, which you want converted to B&W, but you also expect some pages with color
content which you want to be preserved as color.

- 54 -

Web Scanning Client Reference

Example

Atalasoft.Controls.Capture.WebScanning.initialize({
handlerUrl: 'TestCaptureHandler.ashx',
scanningOptions: {

resultPixelType: -2, // detect color & B&W pages automatically
suppressBackgroundColor: true // treat solid color background as white

}
});

tiff.jpegCompression

Controls use of JPEG compression when writing color and grayscale images in TIFF format.

Important: Uses the revised TIFF 6 form, not Wang/Microsoft variant - check your down-
stream processes for compatibility.

When true, JPEG compression is used when writing color or grayscale images to TIFF.

When false, JoltImage is free to choose some other compression for color and grayscale
images in TIFF. For JoltImage 10.6 the default choice is "no compression".

Default value: false.

Example

Atalasoft.Controls.Capture.WebScanning.initialize({
handlerUrl: 'TestCaptureHandler.ashx',
scanningOptions: { tiff: { jpegCompression: true } }
// Note the nested object-within-object construction

}

- 55 -

Chapter 3

Connecting to the Web Document Viewer
To display the documents scanned with the JoltImage WebScanning Control in the same
page, or possibly another page in a web browser simply do the following:

1. Add the Web Document Viewer resources to the application.

2. Add the following div tag to the same page:

Code Snippet

<div>
<div class="atala-document-toolbar" style="width: 670px;"></div>
<div class="atala-document-container" style="width: 670px; height: 500px;"></div>

</div>

3. In the html/aspx/jsp page add the following script. The values of serverurl and
handlerUrl should be changed to the locations of your WebDocViewer and Capture
handlers, respectively.

- 56 -

Web Scanning Client Reference

Code Snippet

<script type="text/javascript">
// Show status and error messages
function appendStatus(msg)
{

$('#status').append('<p>'+msg+'</p>');
}

// Initialize Web Scanning and Web Viewing
$(function() {

try {
var viewer = new Atalasoft.Controls.WebDocumentViewer({
parent: $('.atala-document-container'),
toolbarparent: $('.atala-document-toolbar'),
serverurl: 'WebDocViewer.ashx'

});

Atalasoft.Controls.Capture.WebScanning.initialize({
handlerUrl: 'TestCaptureHandler.ashx',

onScanError: function(msg, params) { appendStatus(msg); },
onScanStarted: function(eventName, eventObj) { appendStatus('Scan

Started'); },
onScanCompleted: function(eventName, eventObj) { appendStatus('Scan

Completed: ' + eventObj.success); },

onUploadError: function(msg, params) { appendStatus(msg); },
onUploadStarted: function(eventName, eventObj) { appendStatus('Upload

Started'); },
onUploadCompleted: function(eventName, eventObj) {

appendStatus('Upload Completed: ' + eventObj.success);
if (eventObj.success) {
viewer.OpenUrl('atala-capture-upload/' +

eventObj.documentFilename);
}

},
scanningOptions: { pixelType: 0 }

});

Atalasoft.Controls.Capture.CaptureService.initialize({
handlerUrl: 'TestCaptureHandler.ashx',
onError: function(msg, params) { appendStatus(msg +': ' +

params.statusText); }
});

}
catch (error) {
appendStatus('Thrown error: ' + error.description);

}
});

</script>

- 57 -

Chapter 3

Using VirtualReScan (VRS)
The JoltImage Web Scanning Control includes the award-winning VirtualReScan Technology
(VRS), a "de Facto Standard" for image processing.

By default, VRS processing is applied to each scanned image: All images are auto-rotated and
deskewed, and non-B&W images are converted to B&W (‘binarized’).

Please note: The specific image processing steps performed by VRS may change in future
versions of JoltImage.

To turn on or off VRS processing in the client an optional argument must be passed into the
Atalasoft.Controls.Capture.WebScanning.initialize method on the page in which the control
has been added. See Client API Reference.

Example - Disabling VRS
JavaScript

Atalasoft.Controls.Capture.WebScanning.initialize({
handlerUrl: 'TestCaptureHandler.ashx',

onScanError: function(msg, params) { appendStatus(msg); },
onScanStarted: function(eventName, eventObj) { appendStatus('Scan Started'); },
onScanCompleted: function(eventName, eventObj) { appendStatus('Scan Completed: ' +

eventObj.success); },

onUploadError: function(msg, params) { appendStatus(msg); },
onUploadStarted: function(eventName, eventObj) { appendStatus('Upload Started'); },
onUploadCompleted: function(eventName, eventObj) {

appendStatus('Upload Completed: ' + eventObj.success);
if (eventObj.success) {

viewer.OpenUrl('atala-capture-upload/' + eventObj.documentFilename);
}

},
scanningOptions: { pixelType: 1, applyVRS: false }

});

Atalasoft.Controls.Capture.CaptureService.initialize({
handlerUrl: 'TestCaptureHandler.ashx',
onError: function(msg, params) { appendStatus(msg +': ' + params.statusText); }

});

In the scanningOptions argument, applyVRS is set to false to turn VRS off in the Web
Scanning Control.

- 58 -

Web Scanning Client Reference

Testing Your Application
Obviously you should test scanning, ideally with several scanners. Yes, we try to hide all the
scanning issues and make it "just work". Nonetheless, it can be beneficial to learn about the
problems your end-users will have setting up and using scanners, to get a sense of the little
idiosyncrasies every scanner has, and to understand the physical details of the task you are
asking users to carry out.

Test in Internet Explorer, Firefox and Chrome

Always test with all the browsers you intend to support. The Web Capture plugin operates
very differently inside Internet Explorer versus Firefox or Chrome, and of course there are
subtle web coding differences between any two browsers.

Test for Error Conditions.

Scanning and uploading documents is fast and simple when everything works. Your users' effi-
ciency and satisfaction will primarily depend on how you handle errors and failures.

Verify that your application behaves in a reasonable way and guides users successfully when:

1. The browser is unsupported: Safari, or Opera, or a non-Windows OS.

2. The client PC has no devices in the TWAIN device list.

3. The selected scanner is turned off or disconnected.

4. A scan is canceled mid-scan.

5. JoltImage throws an error, especially those documented in Handling Errors.

- 59 -

Chapter 3

Troubleshooting Web Scanning Problems

My scanner appears in the list as WIA-something - what does this mean?

Many scanners support Microsoft's proprietary scanner protocol, called WIA. Microsoft Win-
dows performs some magic to make WIA devices also appear as TWAIN devices. However,
these pseudo-TWAIN devices are not native TWAIN drivers, and sometimes have important
limitations. If you have any problems using a WIA driver through TWAIN, see if the scanner
vendor offers a native TWAIN driver.

My scanner appears twice in the scanner list, once with a WIA-prefix and once
without - what does this mean?

This means your scanner supports the Microsoft WIA scanner protocol as well as having a nat-
ive TWAIN driver. Basically you are seeing two different drivers that can both talk to your
scanner. In general we recommend using the native (non-WIA) driver, but you are welcome
to try them both and see which one works better for you.

Scanner does not appear in device list.

Things to check:

l Is the scanner connected and powered on.

l Does the scanner support TWAIN? The popular Fujitsu ScanSnap models do not.

l Is a TWAIN driver for the scanner installed? Most do not auto-install.

l Test the driver+scanner combination outside the browser with IrfanView, see "Scanning
fails" below.

Scanning fails with "unable to open" or "connection failure"
Scanning fails before scanning any pages

l Is the scanner connected and powered on?

l If there has been a recent crash or error related to scanning?
Try cycling the power on the scanner and then re-try the scan, up to two times.

l Verify that the scanner is working outside the browser, through TWAIN. Note the
TWAIN name of the device.
To verify that a scanner has a working TWAIN driver, we sometimes use IrfanView -
this is a free scanning application with TWAIN support.

If IrfanView can scan from your scanner, then you have a working scanner with
a working TWAIN driver.
In this case web scanning failures are most likely Internet Explorer 'sandboxing'
the scanner driver: Try moving your website into the trusted zone.

If IrfanView cannot find and scan from your scanner, then you don't have the
basic prerequisite of a working TWAIN scanner.
The ultimate fall-back for this kind of problem is to get support from the scan-
ner vendor.

Uploads fail with '598' status

If uploads fail with ‘598’ status codes, this indicates the client-side code timed-out waiting
for the upload to complete. You can increase the Params.serverTimeout: Integer value, try to
speed up your connection, reduce your upload sizes (see below), or (if it’s actually the prob-
lem) speed up your server.

- 60 -

http://msdn.microsoft.com/en-us/library/windows/desktop/ms630368(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms630368(v=vs.85).aspx
http://www.irfanview.com/

Web Scanning Client Reference

Documents do not display in viewer after scan & upload

First check the upload: Are the documents being uploaded?

1. Attach handlers for onUploadStarted, onUploadCompleted and onUploadError (see Cli-
ent API Reference) - is onUploadCompleted being fired, and not onUploadError?

2. Does each new upload appear in the upload folder on the server? (See notes about the
upload folder in Getting Started with Web Capture).

Second, check the viewer:

1. Is the code to invoke the viewer being called, and is the correct URL being given to the
viewer? An alert box is an easy way to check this.

2. Can you enter the URL or its fully-qualified equivalent into a browser manually and get
the expected file?

Scan quality is poor

If images or graphics looks bad, could this be because the scans are being converted to black &
white? See question below.

Are you setting the resolution? See Setting Scanning Options. A very low resolution - anything
below 100 DPI or so - will produce blurry or ... well, 'low-res' images.

As a very rough guide, for black & white scans of text:

100
DPI

legible but visibly rough & pixelated, like a poor quality fax or a 1970's video game.

150
DPI

modest fax quality, still some visible defects and pixelation but highly legible in typ-
ical on-screen viewing.

200
DPI

high quality fax. A full page viewed on screen looks good, letters look slightly fuzzy or
'haloed'.

300
DPI

good quality, minor defects usually visible only under magnification.

All scans are converted to B&W, even my bunny pictures

This is the default behavior for WebCapture: It applies several VRS clean-up operations to
each scan, including binarization, which converts the image to 1-bit per pixel black & white.

To avoid this, specify the resultPixelType as grayscale (1) or color (2). If you are using VRS,
you can also specify resultPixelType: -2 which tells VRS to automatically classify each
image as color or non-color, and to convert only non-color images to B&W.

I ask for duplex scanning, but only front sides are scanned.

It sounds a little silly, but the first thing to check is that 'duplex scanning' is a listed feature
of the scanner.

Assuming the scanner claims to support duplex (both sides) scanning, the most common
reason for it to fail is using the scanner through a WIA driver (choosing WIA-something in
the scanner list). The WIA drivers have historically had problems with duplex scanning.

If a WIA-driver is being used, the solution is to find, install and use a native TWAIN driver
for the scanner.

- 61 -

Chapter 3

Uninstalling Web Capture MSI
Here are the steps to uninstall the web scanning service on a Windows client machine.

1. Open Add or Remove Programs

2. Find and right click the Kofax WebCapture item.

3. Select Uninstall

- 62 -

Web Scanning Client Reference

Client API Reference

Atalasoft.Controls.Capture.WebScanning

This object is responsible for communicating with the client-side scanner, con-
trolling scanning, and uploading scanned documents to the web server.

Atalasoft.Controls.Capture.WebScanning.initial ize(params)

This method must be called to initialize the WebScanning com-
ponent. The params object must contain a handlerUrl property,
the other properties are optional.

As a side-effect, initialize attempts to initialize TWAIN scanning
on the client, and to collect a list of available TWAIN scanners. If it
is successful, it will populate a scanner-list control and enable a
scan button, provided that they exist with the appropriate classes.
See Connecting to UI Controls.

The scanner initialization process is asynchronous and may not
have finished when the initialize function returns. In fact it
may never complete, for example if the user declines to install
and activate the plugin MSI.

params.handlerUrl: string

The URL of the web request handler. This is normally a relative
URL, for example: 'TestCaptureHandler.ashx'

Params.serverTimeout: Integer

This is the number of seconds to wait for the server response after
starting an upload. After this number of seconds, the upload is con-
sidered to have failed, it is canceled, and an error is signaled by call-
ing onUploadError.

Default value: 20

Params.onScanClientReady: function()

This handler is called when scanning initialization is complete. Not
successful, just complete: Scanning initialization has either suc-
ceeded fully, or failed. Normally in case of failure the onScanError
handler will have been called.

See Handling Errors

params.onScanError: function(msg, params)

This handler is called when an error occurs during scanning or
scan initialization.

See Handling Errors

params.onScanStarted: function(eventName, eventObj)

This handler is called when a scan is started. See Handling Events

params.onScanCompleted: function(eventName, eventObj)

This handler is called when a scan is completed. See Handling
Events

- 63 -

Chapter 3

params.onUploadStarted: function(eventName, eventObj)

This handler is called when a document upload is starting. See
Handling Events

params.onUploadCompleted: function(eventName, eventObj)

This handler is called a document upload has completed. See Hand-
ling Events

params.onUploadError: function(msg, params)

This handler is called when an error occurs during uploading. See
Handling Events

params.scanningOptions: object

This object contains any scanner settings to be used for scanning,
as described in Setting Scanning Options.

Atalasoft.Controls.Capture.WebScanning.scan(options)

Initiates a scan with the specified scanning options (see Setting Scanning
Options).

If you pass in nothing, null or undefined, it uses the scanning options stored in
Atalasoft.Controls.Capture.WebScanning.scanningOptions.

This method is called (with no parameters) when the user clicks the designated
scan button. See Connecting to UI Controls

Atalasoft.Controls.Capture.WebScanning.scanningOptions

This property holds the current scanning options as described in Setting Scan-
ning Options. These options are used when the user clicks the scan button, or if
Atalasoft.Controls.Capture.WebScanning.scan() is called.

Initially this holds the scanningOptions object passed to Atalasoft.Con-
trols.Capture.WebScanning.initialize(params), but your code can dynamically
edit this object to change the settings for a subsequent scan.

Atalasoft.Controls.Capture.WebScanning.getProfi le()

This method returns a string, containing the current scanning options. The
string is in JSON format, but you should not rely on that.

Atalasoft.Controls.Capture.WebScanning.setProfi le(s)

This method loads the scanning options from a string previously produced by
Atalasoft.Controls.Capture.WebScanning.getProfile().

Note that this is not a merge - all scanning options not set in the string s are
cleared.

Atalasoft.Controls.Capture.CaptureService

This object is responsible for returning information from KIC, such as the content-types and
content-type document descriptions, and for importing uploaded documents into Kofax Cap-
ture, and SharePoint.

- 64 -

Web Scanning Client Reference

. initial ize(params)

This method must be called to initialize the CaptureService component. The
params object must contain a handlerUrl, the other items are optional.

As a side-effect, initialize starts a process that attempts to communicate with
the KIC, or SharePoint service and obtain the content-type list and content-type
document description list. If this process succeeds, it will populate the appro-
priate controls on the web page, if they exist with the correct classes. See Con-
necting to UI Controls.

params.handlerUrl: string

The URL, normally relative, of the KIC extended web request hand-
ler on the server.
For example: 'TestCaptureHandler.ashx'

params.onError: function(msg, params)

This event is called if KIC returns an error. See Handling Errors.

Params.onImportCompleted: function(params)

This event is called when a document has finished importing. See
Handling Events.

Params.onBeforeImport: function(boolean)

This parameter must return a function that returns true or false.
The function passed in through this parameter will be run prior to
importing a document to Sharepoint, or KC. See Handling Events.

Params.onTrackStatusReceived: function(params)

This event is called when track status of a document imported into
KC, or SharePoint is requested. See Handling Events.

Params.contentType: String

Use this parameter when the client is not bound to any UI ele-
ments in a page to set the batch class or repository name for KIC,
and SharePoint respectively. See Connecting the Client With No UI.

Params.defaultContentType: String

Use this parameter to specify one content type to be the content
type first displayed and selected when the list is populated.

Params.onContentTypesCreated: function(params)

The event is fired after the content type selection box has finished
being populated. See Handling Events.

Params.contentTypeDescriptionName: String

Use this parameter when the client is not bound to any UI ele-
ments in a page to set the KIC document class/form type pair, or
the SharePoint list content type. See Connecting the Client With No
UI.

Params.onContentTypeDescriptionsCreated: function(params)

The event is fired after the content type description selection box
has been populated. See Handling Events.

- 65 -

Chapter 3

Params.removedContentTypes: String

Use this parameter to filter the list of content types displayed in
the content type selection drop down. The list (comma separated)
specified in the parameter will be removed from the list. See Fil-
tering Selection Lists.

Params.removedContentTypeDescriptions: String

Use this parameter to filter the list of content type descriptions dis-
played in the content type document list selection drop down. The
list (comma separated) specified in the parameter will be removed
from the list. See Filtering Selection Lists.

Params.LoosePages: String

This parameter enables importing loose pages in to KC through
KIC only. Set to "true" to enable. Default is false. To specify a loose
pages selection text in the atala-contenttype-document-list selec-
tion set the parameter to "true, <any text>", if unspecified a blank
entry is created. See Importing Loose Pages.

Params.displayedLoosePagesForContentType: String

Use this parameter in conjunction with the LoosePages parameter.
Will only apply to clients connecting to a KIC service. This take a
comma separated list of batch class names which should have the
loose pages option included in the content type description name
drop down list.

Params.indexFields: String

Use this parameter when the client is not bound to the indexfield
UI div to set the indexfields for the specified KC/KIC document
class or SharePoint list content type. See Connecting the Client
With No UI.

Params.displayedIndexFields: String

Use this parameter when the client is bound to the index field dive
element to inclusively filter the list of index fields displayed. See
Connecting UI Controls.

Params.onIndexFieldImportValidationError: function(params)

Use this parameter to deal with index field validation errors. See
Error Handling.

Params.onIndexFieldTypeValidationStatus: function(params)

Use this parameter to customize how index field validation gets
dealt with in the client. See Handling Events.

Params.onIndexFieldCompleted: function(params)

Use this parameter to customize event behavior when an index
field label, and input field have been created. See Handling Events.

Params.onIndexFieldsCompleted: function(params)

Use this paramter to customize event behavior for after all index
field labels and input fields have been created. See Handling
Events.

- 66 -

Web Scanning Client Reference

Params.batchFields: String

Use this parameter when the client is not bound to the indexfield
UI div to set the bath fields for the specified KC/KIC batch class.
The batch field value pairs cannot be used when connecting to the
handler used to connect to SharePoint. See Connecting the Client
With No UI.

Params.displayedBatchFields: String

Use this parameter when the client is bound to the index field dive
element to inclusively filter the list of batch fields displayed. See
Connecting UI Controls.

Params.onBatchFieldImportValidationError: function(params)

Use this parameter to deal with batch field validation errors. See
Error Handling.

Params.onBatchFieldTypeValidationStatus: function(params)

Use this parameter to customize how batch field validation gets
dealt with in the client. See Handling Events.

Params.onBatchFieldCompleted: function(params)

Use this parameter to customize behavior after each batch field
label, and input field have been created. See Handling Events.

Params.onBatchFieldsCompleted: function(params)

Use this parameter to customize behavior after all of the batch
fields labels and input fields have been created. See Handling
Events.

.setIndexFieldValues(String)

This function can be used to set index fields outside of the ini-
tialization parameters. Currently this works as it would if used in
the initialization parameters, and is intended to be used when no
UI for index fields is present.

Example:

var indexFields = "Required: f i l led in";

Atalasoft.Con-
trols .Capture.CaptureService.setIndexFieldValues
(indexFields);

.setBatchFieldValues(String)

This function can be used to set batch fields outside of the ini-
tialization parameters. Currently this works as it would if used in
the initialization parameters, and is intended to be used when no
UI for batch fields is present.

Example:

var batchFields = "BatchField1: SomeText";

- 67 -

Chapter 3

Atalasoft.Con-
trols .Capture.CaptureService.setBatchFieldValues
(batchFields);

- 68 -

Web Document Viewer

Web Document Viewer
The following sections describe setting up and using the JoltImage Web Document Viewer.

Web Document Viewer Overview 70

Web Document Viewer Guide 72

WebDocumentViewer Javascript API 76

Constructor & Configuration Parameters 77

Public Methods 80

Events 86

The Annotation Object 90

WebDocumentViewer Sample Code 93

WebDocumentThumbnailer Javascript API 99

Constructor & Configuration Parameters 100

Public Methods 102

Events 106

- 69 -

Chapter 3

Web Document Viewer Overview
The WebDocumentViewer is JavaScript based image viewing control that can be created on
the client side without the need for a traditional WebServerControl back end. It com-
municates directly with a WebDocumentRequestHandler on the server side, so there are no
page lifecycle problems to deal with.

Getting Started

A WebDocumentViewer only requires a few snippets of HTML and JavaScript on your page,
and a separate bare-bones handler.

See our Web Document Viewer Guide for a step-by-step tutorial of setting up a WebDocu-
mentViewer in a new project and deploying it to an application server.

To learn more about opening new documents, or programmatically manipulating annota-
tions, see the WebDocumentViewer Javascript API Guide.

Constructor

The WebDocumentViewer constructor can accept different configuration parameters to change
the initial behavior of the viewer. The current supported options are:

serverurl : A relative path to your viewer's web handler. Required.

documenturl : A relative path to a document on your server that will be initially
displayed. Required.

parent : The jQuery div element in your page that will contain the viewer.
Required.

toolbarparent : The jQuery div element in your page that will contain the
viewer's toolbar.

fitting : The default method for fitting pages. Acceptable values are Fit-
ting.Width and Fitting.None.

pagespacing : The width (in pixels) between pages.

showpageborder : Whether or not page borders should be displayed. Acceptable
values are true and false.

showpagenumber : Whether a page number should be shown on each page.
Acceptable values are true and false.

allowannotations : Whether annotations should be enabled. Acceptable values
are true and false.

annotationsurl : A relative path to an xmp file of serialized annotations that
will be initially displayed. Not required.

savepath : A relative path where annotation data should be saved on the server.
Required for annotation saving.

See the Web Document Viewer Guide for basic constructor usage with required configuration
options, or WDV Sample Code to see an example of a constructor.

jQuery UI Styling

The control's toolbar is styled with jQuery UI by default. You can download new themes from
http://jqueryui.com/themeroller/ and include them in your web page after the required
JavaScript and css includes for the viewer. In order to prevent viewer styling from overriding

- 70 -

http://jqueryui.com/themeroller/

Web Document Viewer

styling on the rest of your page, some jQuery UI styling is further customized by jQuery UI
CSS classes prefixed with 'atala-'. These classes can be overridden to change default styling of
the control and toolbar.

Saving and Loading Annotations

When the Web Document Viewer is constructed with the 'savepath' property configured to a
relative path on the server, a 'save' button will automatically appear in the upper left corner of
the toolbar. When 'allowannotations' is set to true, additional buttons that allow users to
draw annotations will also appear in the toolbar.

When you click the save button, the annotation data for the entire document is sent back to
the server, serialized, and then saved in XMP format in the directory specified by the 'save-
path' property in the constructor. The filename will match the name of the document open in
the Web Document Viewer when the annotations are saved; in the case that 'Example.tif' is
opened, annotated, and then saved, the resulting annotation data file will be named
'Example.xmp'.

Loading annotations requires a call to a public JavaScript method supported by the viewer,
and cannot be done through the toolbar. For the API calls to do this, see openUrl in the WDV
Javascript API Guide.

Thumbnails

The WebDocumentThumbnailer class shows thumbnails of pages and annotations, and is
used in the same manner as the WebDocumentViewer. It also can create an automatic link
between an already defined WebDocumentViewer, so that both the thumbnails and the viewer
are as one control. For an example on how to use this with the WebDocumentViewer, see
WebDocumentThumbnailer Sample Code.

Troubleshooting

l If images don't show up, and you receive an alert that there was an image error, the
license file might not have been found by the handler. Try placing the license file in the
bin folder of the Web Site.

l If problems still persist, please contact our Support Team.

- 71 -

Chapter 3

Web Document Viewer Guide
This guide will walk you through setting up a functioning Web Document Viewer in a new
Eclipse web project. Adjust these instructions accordingly if Eclipse is not your development
environment, or if you wish to work with an existing project.

Setting up your project

In Eclipse, create a new Dynamic Web Project.

After the project is created, open the project's properties and make the following configuration
changes:

l In the Java Build Path section, click the Libraries tab and add the external jars listed
below. The Bouncy Castle and json-simple jars are found inside the Lib directory of the
distributed zip file.

l JoltImage.jar

l javaee-api-6.0.jar (or any jar that provides a J2EE-6.0-compatible API)

l bcmail.jar

l bcprov-jdk15-135.jar

l json_simple-1.1.jar

l In the Deployment Assembly section, add a new Assembly Directive by selecting Java
Build Path Entries from the Add menu, and then selecting JoltImage.jar, bcmail.jar,
bcprov-jdk15-135.jar, and json_simple-1.1.jar from the list of available entries. This
step is optional if you plan on making those jars available to your application con-
tainer by some other means.

Add project resources

Your project will need a copy of the Web Document Viewer resources, which includes client-
side javascript and styles. These resources were included with theJoltImage distribution, loc-
ated in \WebResources\WebDocViewer.

Copy the WebDocViewer directory into the content root (WebContent directory by default) of
your project.

We’ll also create a default location to store images that will be displayed by the viewer.
Create a new directory called Images in the content root of your project, and add an image or
document of your choice to this directory that you want displayed by default. We’ll assume
that the image you’ve added is called Example.tif.

Add a handler for the viewer

The document viewer will communicate with a separate handler on your website. The handler
will be a class deriving from WebDocumentRequestHandler, which in turn derives from
HttpServlet.

Add a new class to your project, extending from WebDocumentReuqestHandler as the super-
class. We'll assume that this class is com.mydomain.myproject.WebDocViewer.java.

Add a @WebServlet annotation to publicly expose the handler, unless you intend on mapping
all of your servlets in the web.xml deployment descriptor.

Your class should resemble the following example.

- 72 -

Web Document Viewer

Java

package com.mydomain.myproject;

import javax.servlet.annotation.MultipartConfig;
import javax.servlet.annotation.WebServlet;

import com.atalasoft.imaging.webcontrols.WebDocumentRequestHandler;

/** */
@MultipartConfig
@WebServlet(

name = "WebDocViewerHandler",
urlPatterns = {"/WebDocViewerHandler"}

)
public class WebDocViewer extends WebDocumentRequestHandler {

private static final long serialVersionUID = 1L;

static {
// Licensing code - see Licensing JoltImage

}
}

See Licensing JoltImage for the correct licensing code to insert for your edition of JoltImage.

Add your web page

In a real deployment, you will want to insert the web document viewer into your own web
page, but for this example we will work with a new page.

Add a new JSP to your project. We’ll assume that this file is called index.jsp. Since this part
of the Web Document Viewer is purely client-side you could just as easily use a standard
HTML file, or even a .NET ASPX file if you were serving the client portion from a separate
IIS server.

A Web Document Viewer needs three chunks of code to load resources, create a viewing area,
and initialize that area.

To load the necessary resources for creating web document viewer objects, add the following
lines of HTML in your document’s head.

HTML

<script src="WebDocViewer/jquery-1.7.1.min.js" type="text/javascript"></script>
<script src="WebDocViewer/atalaWebDocumentViewer.js" type="text/javascript"></script>
<link href="WebDocViewer/atalaWebDocumentViewer.css" rel="Stylesheet" type="text/css" />

Next, add the following HTML into your document’s body to create the document viewing
area. The div tags can be customized. In this example, the height and width have been con-
strained.

HTML

<div id="_toolbar1" class="atala-document-toolbar" style="width: 670px;"></div>
<div id="_container1" class="atala-document-container" style="width: 670px; height:
500px;"></div>

Finally, add the following chunk of JavaScript for initializing your viewer. The constructor
accepts various configuration options that affect the viewer’s behavior or initial state. A min-
imum configuration is provided to tell the viewer where it should create the viewer (pointing
to the div tags we added), where its web handler is located, and what image should be dis-
played initially. This should be placed anywhere after the above snippet.

- 73 -

Chapter 3

HTML / JavaScript

<script type="text/javascript" language="javascript">
var _docUrl = 'Images/Example.tif';
var _serverUrl = 'WebDocViewerHandler';
var _viewer = new Atalasoft.Controls.WebDocumentViewer({

'parent': $('#_container1'), // parent container to put the viewer in
'toolbarparent': $('#_toolbar1'), // parent container to put the viewer toolbar in
'serverurl': _serverUrl, // server handler url to send image requests to
'documenturl': _docUrl // document url relative to the server handler

url
});

</script>

Deployment configuration

If you used the @WebServlet annotation to configure your WebDocViewer handler, you don't
need to make any additions to the web.xml deployment descriptor for basic usage. Skip the
rest of this section.

If you elected not to use the annotation, then you will need to include the following lines in
your WEB-INF/web.xml file, under the top-level web-app tag. The values for servlet-class and
url-pattern correspond to values used in the previous examples.

web.xml

<servlet>
<servlet-name>WebDocViewerHandler</servlet-name>
<servlet-class>com.mydomain.myproject.WebDocViewer</servlet-class>

</servlet>
<servlet-mapping>
<servlet-name>WebDocViewerHandler</servlet-name>
<url-pattern>/WebDocViewerHandler</url-pattern>

</servlet-mapping>

Deploying to an application server

Export your web project to a WAR (Web Archive) file. Internally, this archive should include
the compiled class for your web handler, your client-side JSP file, client-side
Web Document Viewer resources, and the JoltImage SDK (JoltImage.jar).

Import the WAR file into your J2EE application server. If you encounter problems with
deployment, consult the error logs provided by your server. Detailed instructions are provided
for some application servers below.

GlassFish Server 3.1

Access the GlassFish Admin Console and navigate to Applications. By default, the Admin
Console can be accessed at http://myglassfishserver:4848.

Press the Deploy button, select Packaged File to Be Uploaded to the Server as the Location,
and browse for your application's WAR file.

All default settings for Web Application are adequate unless you have special requirements.
Press the OK button the complete deployment.

In case of problems, error logs are located in <glassfishDir>/glassfish/-
domains/<domain>/logs. The log will include exceptions thrown by JoltImage or the Java
class loader.

- 74 -

Web Document Viewer

Troubleshooting

No Documents Appear In The Web Document Viewer

If you have successfully deployed your application to an application server, but the Web Docu-
ment Viewer does not appear to work, then the web handler may be failing and returning an
HTTP 500 code. Use a tool such as Fiddler Web Debugger to see if this is the case. Check the
error logs provided by your application server for more detailed information.

The Server Logs Contain NoClassDefFoundErrors After Loading The Applic-
ation

If you see messages such as:

l java.lang.NoClassDefFoundError: com/sun-
/media/imageio/plugins/tiff/TIFFImageReadParam

l java.lang.NoClassDefFoundError: Could not initialize class com.atalasoft.ima-
ging.codec.RegisteredDecoders

This indicates that the Java Advanced Image (JAI) jars were not loaded correctly. The lib-
raries jai_core.jar, jai_codec.jar, and jai_imageio.jar must be available on the classpath that
your application server uses for deployed applications. Places to try sticking these files
includes:

l In the lib/ext directory of your active JRE.

l In the lib/ext directory of your application domain (GlassFish).

If you see messages such as:

l java.lang.NoClassDefFoundError: com/atalasoft/ima-
ging/webcontrols/WebDocumentRequestHandler

This indicates that you have not included the JoltImage.jar library with your WAR package,
or have not included it correctly.

The Server Logs Contain OutOfMemory Errors When Opening Large Files
(especially PDF Files)

We suggest that you try increasing the maximum heap size of the hosting jvm (-Xmx).

- 75 -

Chapter 3

WebDocumentViewer Javascript API
The WebDocumentViewer object that gets created on your page currently supports methods
that enable you to open documents, and if your viewer is configured to enable them, view and
manipulate annotations.

- 76 -

Web Document Viewer

Constructor & Configuration Parameters

WebDocumentViewer(Config)

This takes a configuration object (a list) that gets used to construct the web document viewer,
or web annotation viewer.

Configuration Parameters:
Config.allowannotations: Boolean

Turns annotation support on or off.

Default is false.

Config.allowflick: Boolean

Turns flick scrolling support on or off.

Default is true.

Config.allowforms:

Provides support for PDF fillable forms and is associated with
PdfFormRequested event in WebDocumentRequestHandler.

Default is false.

Config.annotations: Object

The object passed through this parameter is a list. See the Annota-
tion Object section below for the details.

Config.direction: Atalasoft.Utils.ScrollDirection

Parameter to change the orientation of the viewer.

Default is Atalasoft.Utils.ScrollDirection.Vertical.

Config.documenturl: String

To specify a document (that is on the server) to be displayed when
the viewer is first opened.

Config.annotationsurl: String

To specify annotation data (an .xmp file on the server) that should
be displayed along with the displayed document.

Config.fitting: Atalasoft.Utils.Fitting

This specifies the document fit when displayed in the viewer.

Default is Atalasoft.Utils.Fitting.Width.

Config.jpeg:

This specifies that images should to be returned from the server as
JPEG instead of PNG.

Default is false.

Config.maxwidth: Int

Specifies the maximum amount of pixel width allowed for zooming
in on a page.

Default is 3000.

- 77 -

Chapter 3

Config.minwidth: Int

Specifies the minimum amount of pixel width allowed for zooming
out on a page.

Default is 150.

Config.pageborderwidth: Int

This specifies the border width around a displayed page in a doc-
ument in pixels.

Default is 1.

Config.pagebuffersize: Int

The number of pages to keep in memory while scrolling. Negative
values will automatically calculate the optimal number based on
available screen space. Values lower than can be displayed will be
ignored, and higher values will cause a degradation in per-
formance.

Default is -1.

Config.pageselectlocation: Atalasoft.Utils.PageSelection.TopLeft

Allows finer control of how much of the document is present before
changing "current page."

Valid values:

Atalasoft.Utils.PageSelection.TopLeft

Atalasoft.Utils.PageSelection.MiddleLeft

Atalasoft.Utils.PageSelection.BottomLeft

Atalasoft.Utils.PageSelection.Center

Default is Atalasoft.Utils.PageSelection.TopLeft

Custom values:

Where x/y is a value from 0 to 1 which is percent and 0,0 is top
left and 1,1 is bottom right

pageselectlocation: {x: 1, y: 0} // top right

pageselectlocation: {x: 1, y: 0.5} // middleright

Config.pagespacing: Int

This parameter can be used to specify the distance (in pixels)
between pages displayed in the viewer.

Default is 4.

Config.parent: jQuery Object

This is a required parameter, and is used to specify the jQuery
object that the viewer will be created in.

Example:

var conf ig = {

parent: $('.atala-document-container '),

- 78 -

Web Document Viewer

serverur l: 'MyHandler .ashx'

}

Config.savepath: String

If annotations support is turned on (true), this parameter is used
to specify the path that the annotation data will be saved to on the
server.

Config.scripturl: String

Use this parameter to specify a location on the server in which all
JavaScript files are put when not in a default location in a project.

Config.serverurl: String

This is a required parameter, and points to the server handler.

Config.showbuttontext: Boolean

If the toolbar is displayed, this parameter can be used to toggle the
button text for the toolbar items.

Default is true.

Config.showpageborder: Boolean

When true this parameter will show a black border around each
page in the displayed document.

Default is true.

Config.showpagenumber: Boolean

Displays the page number when set to true.

Default is true.

Config.showerrors: Boolean

Set to true for errors to be thrown. If showstatus is true, they will
also be displayed in the toolbar status.

Default is false.

Config.showstatus: Boolean

Set to true to show the viewer status messages in the toolbar.

Default is false.

Config.showscrollbars: Boolean

This parameter controls the display of the scroll bars.

Default is true.

Config.toolbarparent: JQuery Object

This parameter specifies the jQuery object where the toolbar will be
created.

Config.zoom: Number

This parameter is used to set the initial zoom level of a document
displayed in the viewer.

Default is 1.

- 79 -

Chapter 3

Public Methods

Viewer

.annotations
.getSelected()

Description: Gets a two dimensional array of selected annotations,
first index is the page it's currently on.

.selectAll()

Description: Selects all annotations on every page.

.deselectAll()

Description: Deselects all the annotations on every page.

.selectAllOnPage(Int)

Description: Selects all annotations on a specified page index.

.deselectAllOnPage(Int)

Description: Deselects all of the annotations on a specified page
index.

.getFromPage(Int)

Description: Get an array of annotation objects from the page spe-
cified.
Returns: An array of Annotation object.

annotations.getFromPage(int pageNum)

pageNum The 0-based index of the page to get
annotations from.

.cancelDraw()

Description: Cancels the drawing of an annotation after the viewer
has been put into create mode.

.createOnPage(Object, int)

Description: Create the annotation on the page specified.
Returns:Annotation Object
Example: Creating An Image Annotation On The First Page

annotations.createOnPage(object annToCreate, int
pageNum)

annToCreate A map of annotation properties to set;
see the Annotation object.

pageNum The 0-based index of the page to create
the annotation on.

.deleteFromPage(Int, int)

Description: Delete the annotation on the page and index spe-
cified.
Example: Deleting an annotation

- 80 -

Web Document Viewer

annotations.deleteFromPage(int pageNum, int
annIndex)

pageNum The 0-based index of the page to delete
the annotation from.

annIndex The 0-based index of the annotation to
delete.

.setDefaults(array)

Description: Set the default values of various annotation. This
affects the annotations drawn by the toolbar buttons (always the
defaults), and the value of properties not specified when calling
methods like annotations.createOnPage or annotations.setImages.
Example: Set Annotation Defaults

annotations.setDefaults(array annoDefaults)

annoDefaults This is an array of maps, specifying
values to overwrite. Values not specified in the indi-
vidual map will be set to the viewer’s default values.

.setImages(array)

Description: Populates a toolbar button called “Draw Images” with
a drop-down list of the image annotations specified in the array
that’s passed in.
Example: Configuring the "Draw Images" menu by calling
setImages

annotations.setImages(array imageAnnos)

imageAnnos An array of maps; each map cor-
responds to a menu item in the drop-down menu that
appears when "Draw Images" is clicked. The only val-
ues that are required are name, which determines
what is displayed in the menu, and src, which is the
source of the image to draw.

.setStamps(array)

Description: Populates a toolbar button called “Draw Stamps” with
a drop-down list of read-only (thus uneditable) text annotations,
as specified in the array that’s passed in.
Example: Configuring the "Draw Stamps" menu by calling
setStamps

annotations.setStamps(array stampAnnos)

stampAnnos An array of maps; each map cor-
responds to a menu item in the drop-down menu that
appears when "Draw Stamps" is clicked. The only val-
ues that are required are name, which determines
what is displayed in the menu, and text, which sets
the values of the text annotation.

.document
.insertPage(sourceUrl, sourceIndex, index, callback)

Description: Inserts a page at the destination index from the given

- 81 -

Chapter 3

source url and index.

sourceUrl: string, source url of the document

sourceIndex: number, zero based source index to get the page
from

index: number, zero based destination index to insert the page

callback: function to execute when the operation has completed.

.removePage(index, callback)

Description: Removes the page at the given index.

index: number, zero based index of the page to remove

callback: function to execute when the operation has completed

.movePage(sourceIndex, destIndex, callback)

Description: Moves a page from the source index to the destination
index.

sourceIndex: number, zero based source index to get the page
from

destIndex: number, zero based destination index to insert the
page

callback: function to execute when the operation has completed

.openUrl

Description: Asynchronously open a document and/or the document’s serialized annotations.

openUrl(string docUrl [, string annurl [, function callBack]])

docURL A relative path to a document on your server that you want to display.
This value may be null or an empty string; this will cause the web document
viewer to display nothing.

annURL A relative path to an xmp document of annotations on your server
that you want to display. This value may be null or undefined, which will do
nothing to the existing annotations. An empty string will clear all annotation
data.

callBack A method to execute when the server returns with the document
and/or the annotation data, and it has finished loading in the Viewer.

.next

Description: Scroll to the next visible page in the currently open document.

next([function callBack])

callBack A method to execute when the scrolling animation completes.

.previous

Description: Scroll to the previous visible page in the currently open document.

previous([function callBack])

callBack A method to execute when the scrolling animation completes.

- 82 -

Web Document Viewer

.getZoom

Description: Returns the current zoom percentage of the Web Document Viewer.
Returns: A number between 0 and 1 that represents the current zoom level.

getZoom()

Zoom

Description: Asynchronously zooms the viewer to the given zoom over the default zoom dur-
ation.
Returns: Undefined.

/**

* @param z number, desired zoom level to zoom to

* @param callback function to execute after the zoom is finished
animating

*/ WebDocumentViewer.zoom(z, callback)

.fit

Description: Fit the currently open document to the setting specified.

fit([object fitting [, function callBack]])

fitting An enum with the following values:

None This displays the document at its full size. If fitting is not specified, this is
the default value.

Width This fits the document to the width of the WDV's div-container.

Best This fits the document so that a single page is entirely visible in the WDV's
div-container.

callBack A method to execute when the resizing animation completes.

.bind

Description: Attach a handler to an event triggered by the Web Document Viewer.

bind (string eventName, function handler(e))

eventName The name of the event you want to bind to. See: Events.

handler The function that should be called to handle the event.

bind(array events)

events A map of one or more events and functions to execute.

.unbind

Description: Remove a previously-attached handler to an event.

unbind (string eventName, function handler(e))

eventName The name of the event you want to unbind from. See: Events.

handler The function that you no longer want to handle the event.

unbind(array events)

- 83 -

Chapter 3

events A map of one or more events and functions to unbind.

.getCurrentPageIndex

Description: Get the 0-based index that corresponds to the currently-viewed page.
Returns: An integer.

getCurrentPageIndex()

.getDocumentInfo

Description: Get some properties that describe the currently-open page.
Returns: an object with the following properties:

count The number of pages of the document currently open in the viewer.

size This is an object with the following properties:

width This integer represents the width of the first page only. All
other pages are automatically sized to this one for the purposes of
viewing.

height This integer represents the height of the first page only. All
other pages are automatically sized to this one for the purposes of
viewing.

getDocumentInfo()

.save

Description: Causes an asynchronous post back to the server to serialize and save the current
state of the annotations. The file will be named the same as the currently open document plus
the xmp extension.

save([string savePath [, function callback]])

savePath A relative path to save the document in. Must be writable. If not spe-
cified, then the file will be saved to the directory specified by the 'savepath' vari-
able set in the WDV constructor.

callback The function to be executed when the server is done saving the annota-
tions.

.scrollBy

Description: Programmatically scrolls the WDV by the specified dx and dy.

scrollBy([int dx, int dy [, boolean animated [, function callback]]])

dx Pixel delta to scroll by on the x-axis.

dy Pixel delta to scroll by on the y-axis.

animated Whether the scroll should be animated (true) or instant (false).
Default is false.

callback The function to be executed when the WDV is finished scrolling.

.scrollTo

Description: Programmatically scrolls the WDV to the specified x and y coordinates.

scrollTo([int x, int y [, boolean animated [, function callback]]])

- 84 -

Web Document Viewer

x Pixel value to scroll to on the x-axis.

y Pixel value to scroll to on the y-axis.

animated Whether the scroll should be animated (true) or instant (false).
Default is false.

callback The function to be executed when the WDV is finished scrolling.

.showPage

Description: Programmatically scrolls the WDV to the specified page.

showPage(int pageToShow [, function callback]])

pageToShow The 0-based index of the page to show.

callback The function to be executed when the WDV is finished scrolling.

- 85 -

Chapter 3

Events
In order to handle any of these events, you will have to call the .bind method on the Web
Document Viewer.

WebDocumentViewer Events

Documentloaded

Description: This event is triggered when the WDV has loaded the document specified either
in the documenturlparameter of the constructor, or the docurl parameter passed into the
.openUrl method.

bind('documentloaded', handler(eventObject))

eventObject The event object passed to the handler is just the default javas-
cript event object.

Annotation Events

For many of these events, the eventObject that is passed to the handler will have an addi-
tional anno property. For more information about this object, see the Annotation object.

Contextmenu

Description: This event is triggered when the user performs the action on an annotation
needed to bring up the context menu (right-click on a standard browser, tap and hold gesture
in mobile.) By handling this event, you can change the contents of the menu that appears.
Example:

bind('contextmenu', handler(eventObject, annotation, menu))

eventObject: The event object passed to the handler is the default javascript
event object.

annotation The annotation object that the event was fired from.

menu This is the context menu that will appear; it is a map where the keys are
the strings of text that will appear in the context menu, and the values are the
functions that are called when that option is selected.

Annotationclicked

Description: This event is triggered when the user uses the mouse to click on an annotation.

bind('annotationclicked', handler(eventObject))

eventObject The event object passed to the handler is the default javascript
event object, with the addition of an annotation property that represents the
annotation the user has clicked on.

Annotationdoubleclicked

Description: This event is triggered when the user uses the mouse to double-click on an
annotation.

bind('annotationdoubleclicked', handler(eventObject))

eventObject The event object passed to the handler is the default javascript
event object, with the addition of an annotation property that represents the
annotation the user has double-clicked on.

- 86 -

Web Document Viewer

Annotationrightclicked

Description: This event is triggered when the user uses the mouse to right-click on an annota-
tion.

bind('annotationrightclicked', handler(eventObject))

eventObject The event object passed to the handler is the default javascript
event object, with the addition of an annotation property that represents the
annotation the user has right-clicked on.

Annotationmousedown

Description: This event is triggered when the user presses one of the mouse buttons while the
cursor is hovering over an annotation.

bind('annotationmousedown', handler(eventObject))

eventObject The event object passed to the handler is the default javascript
event object, with the addition of an annotation property that represents the
annotation the user started to click on.

Annotationmousedownleft

Description: This event is triggered when the user presses the left mouse button while the
cursor is hovering over an annotation.

bind('annotationmousedownleft', handler(eventObject))

eventObject The event object passed to the handler is the default javascript
event object, with the addition of an annotation property that represents the
annotation the user started to left-click on.

Annotationmousedownright

Description: This event is triggered when the user presses the right mouse button while the
cursor is hovering over an annotation.

bind('annotationmousedownright', handler(eventObject))

eventObject The event object passed to the handler is the default javascript
event object, with the addition of an annotation property that represents the
annotation the user has started to right-click on.

Annotationmouseup

Description: This event is triggered when the user releases a mouse button over an annota-
tion.

bind('annotationmouseup', handler(eventObject))

eventObject The event object passed to the handler is the default javascript
event object, with the addition of an annotation property that represents the
annotation over which the user released a mouse button.

Annotationmousemove

Description: This event is triggered when a mouse-move event is detected over one of the
annotations.

bind('annotationmousemove', handler(eventObject))

eventObject The event object passed to the handler is the default javascript

- 87 -

Chapter 3

event object, with the addition of an annotation property that represents the
annotation that the mouse-move event was detected on.

Annotationmouseover

Description: This event is triggered when the user moves the cursor to pass inside the bounds
of an annotation.

bind('annotationmouseover', handler(eventObject))

eventObject The event object passed to the handler is the default javascript
event object, with the addition of an annotation property that represents the
annotation the user has passed the mouse over on.

Annotationmouseout

Description: This event is triggered when the user, having positioned the cursor inside the
bounds of an annotation, moves the cursor outside of those bounds.

bind('annotationmouseout', handler(eventObject))

eventObject The event object passed to the handler is the default javascript
event object, with the addition of an annotation property that represents the
annotation which the user has moved the mouse outside the bounds of.

Annotationtouchstart

Description: This event is triggered when the user touches down on an annotation on a
mobile device.

bind('annotationtouchstart', handler(eventObject))

eventObject The event object passed to the handler is the default javascript
event object, with the addition of an annotation property that represents the
annotation the user has touched down on.

Annotationtouchmove

Description: This event is triggered when the user, having touched down on an annotation,
begins to move their finger across the touch surface.

bind('annotationtouchmove', handler(eventObject))

eventObject The event object passed to the handler is the default javascript
event object, with the addition of an annotation property that represents the
annotation the touch-move is detected on.

Annotationtouchend

Description: This event is triggered when the user is no longer touching an annotation.

bind('annotationtouchend', handler(eventObject))

eventObject The event object passed to the handler is the default javascript
event object, with the addition of an annotation property that represents the
annotation the user is releasing their touch on.

Annotationpinchresize

Description: This event is triggered when the user uses two or more fingers to perform a
pinch-zoom gesture on an annotation to resize it.

bind('annotationpinchresize', handler(eventObject))

- 88 -

Web Document Viewer

eventObject The event object passed to the handler is the default javascript
event object, with the addition of an annotation property that represents the
annotation the user is currently performing the pinch-zoom gesture on.

Annotationcreated

Description: This event is triggered when annotation is created, whether through
mouse/touch events or programmatically.

bind('annotationcreated', handler(eventObject))

eventObject The event object passed to the handler is the default javascript
event object, with the addition of an annotation property that represents the
annotation that was just created.

Annotationloaded

Description: This event is triggered when an annotation is loaded, whether through setting
the annotationsurl property in the constructor, or by calling openUrl.

bind('annotationloaded', handler(eventObject))

eventObject The event object passed to the handler is the default javascript
event object, with the addition of an annotation property that represents the
annotation that was just loaded.

Annotationmoved

Description: This event is triggered when a move on an annotation has been completed --
when the user releases their touch on an annotation they just swiped to move, or release the
mouse button on an annotation they just moved.

bind('annotationmoved', handler(eventObject))

eventObject The event object passed to the handler is the default javascript
event object, with the addition of an annotation property that represents the
annotation that was just moved.

Annotationresized

Description: This event is triggered when the user has finished using the grips or a pinch-
zoom gesture to resize an annotation.

bind('annotationresized', handler(eventObject))

eventObject The event object passed to the handler is the default javascript
event object, with the addition of an annotation property that represents the
annotation that was just resized.

- 89 -

Chapter 3

The Annotation Object
This is the object returned by the .createOnPage(Object, int) method, in an array by the
.getFromPage(Int) method, or in the eventObject passed to a handler.

Annotation Types

These are the exact strings that will appear in an annotation object's type property to indicate
what kind of annotation it is.

l ellipse

l line

l lines

l freehand

l rectangle

l text

l image

l stamp

Annotation Properties

What follows is a list of all of the properties in the annotation object. Note that they are all
lower-case.

type The type of the annotation.

x An integer that represents the X-coordinate of the annotation in document
space.

y An integer that represents the Y-coordinate of the annotation in document
space.

height An integer that represents the height of the annotation.

width An integer that represents the width of the annotation.

selected A boolean that represents whether the annotation is currently selected
-- if true, then grips will display around it.

movable A boolean that indicates whether the annotation can be moved by
user interaction (through the mouse or touch gestures.)

resizable A boolean that indicates whether the annotation can be resized
through the grips or a pinch-zoom gesture.

selectable A boolean that represents whether the annotation can be selected. If
false, then the annotation cannot be moved or resized.

visible A boolean that represents whether the annotation is drawn on the doc-
ument.

src Only relevant for image annotations. A string that represents either the rel-
ative or absolute URL of the image displayed by the annotation.

fill 'fill' is a map with the following key/value pairs:

- 90 -

Web Document Viewer

l color This is a string that contains either a color name supported by the
CSS color specification, or a hex code (with the preceding '#' optional.)

l opacity This is a float value between 0 and 1.

outline 'outline' is a map with the following key/value pairs:

l color This is a string that contains either a color name supported by the
CSS color specification, or a hex code (with the preceding '#' optional.)

l opacity This is a float value between 0 and 1.

l width This is an integer value of the pixel width of the outline.

l startcap 'startcap' is a map to define line annotations startcaps with the
following key/value pairs.

l width String value representing the width of the startcap. Valid val-
ues are 'wide', 'narrow', and 'medium'.

l height String value representing the height of the startcap. Valid
values are 'long', 'short', and 'medium'.

l style String value representing the style of the startcap. Valid val-
ues are 'block', 'open', 'oval', 'diamond', and 'none'.

l endcap 'endcap' is a map to define line annotations endcaps with the fol-
lowing key/value pairs.

l width String value representing the width of the endcap. Valid val-
ues are 'wide', 'narrow', and 'medium'.

l height String value representing the height of the endcap. Valid val-
ues are 'long', 'short', and 'medium'.

l style String value representing the style of the endcap. Valid values
are 'block', 'open', 'oval', 'diamond', and 'none'.

text The 'text' property is only relevant when the annotation's type is 'Text'. It is
a map with the following key/value pairs:

l value This is a string the represents the text actually displayed in the text
annotation.

l readonly A boolean. If true, then the text cannot be edited by the user.

l align This is the string 'left', 'center', or 'right'.

l font Font takes a configuration object consisting of the following prop-
erties:

l bold This must be a boolean value.

l italic This must be a boolean value.

l colorThis must be a string, containing either a color name sup-
ported by the CSS color specification, or a hex code (with the pre-
ceding '#' optional.)

l family This must be a string, containing the name of a font family
that the browser supports. If unrecognized by the browser, the text
annotation will visibly default to Times New Roman.

l size This must be an integer value.

- 91 -

Chapter 3

Annotation Methods

There is currently only one method that an annotation can directly call. This may be expan-
ded in future versions.

Update

Description: When setting attributes on an annotation, this method must be called in order
to have the client view reflect those changes.

update()

- 92 -

Web Document Viewer

WebDocumentViewer Sample Code
What follows is a collection of various code snippets using the public JavaScript API that is
available in the Web Document Viewer.

Constructing the WebDocumentViewer and Enabling Annotations

The _viewer object referred to by the code in this section has been constructed like this:

<script type="text/javascript" language="javascript">
var _docUrl = 'Images/Example.tif';
var _annUrl = 'Annotations/Example.xml';
var _serverUrl = 'WebDocViewer.ashx';
var _viewer = new Atalasoft.Controls.WebDocumentViewer({

'parent': $('#_container1'), // parent container to put the viewer in
'toolbarparent': $('#_toolbar1'), // parent container to put the viewer toolbar in
'serverurl': _serverUrl, // server handler url to send image requests to
'documenturl': _docUrl, // document url relative to the server handler

url
'annotationsurl': _annUrl, // annotation file to load upon page loading
'allowannotations': true, // flag to enable annotations
'savepath': 'Saved/' // relative url to save annotation data to

});
</script>

Because both the annotationsurl and the documenturl have been set, a document and its
annotations will be loaded upon the user first viewing the page. This is the preferable way to
initialize the WDV with a document and/or annotations

For more about setting up the actual web page that the Web Document Viewer will be con-
structed in, see the Web Document Viewer Guide

Constructing the WebDocumentViewer with Thumbnails

This example uses the same viewer definitions as above, but leaves out a few config options:

- 93 -

Chapter 3

<!-- Example HTML to show thumbnails on the left side of the viewer -->
<div style="width: 900px;">

<div id="_toolbar1"></div>
<div id="_containerThumbs" style="width: 180px; height: 600px; display: inline-

block;"></div>
<div id="_containerViewer" style="width: 710px; height: 600px; display: inline-

block;"></div>
</div>

<script type="text/javascript" language="javascript">
var _docUrl = 'Images/Example.tif';
var _annUrl = 'Annotations/Example.xml';
var _serverUrl = 'WebDocViewer.ashx';

var _viewer = new Atalasoft.Controls.WebDocumentViewer({
parent: $('#_containerViewer'), // parent container to put the viewer in
toolbarparent: $('#_toolbar1'), // parent container to put the viewer toolbar in
serverurl: _serverUrl, // server handler url to send image requests to
allowannotations: true, // flag to enable annotations
savepath: 'Saved/' // relative url to save annotation data to

});

var _thumbs = new Atalasoft.Controls.WebDocumentThumbnailer({
parent: $('#_containerThumbs'), // parent container to put the thumbnails in
serverurl: _serverUrl, // server handler url to send image requests to
documenturl: _docUrl, // document url relative to the server handler url
annotationsurl: _annUrl, // annotation file to load upon page loading
allowannotations: true, // flag to enable annotations
viewer: _viewer // link actions to the _viewer so they open the

same doc
});

</script>

In this example, both the annotationsurl and the documenturl have been set for the
WebDocumentThumbnailer and not for the WebDocumentViewer. When the viewer config
option is provided, the WebDocumentThumbnailer will link the two viewers to the same doc-
ument, and provide some shortcut methods to the thumbnails so that one object can be used
to navigate the document.

For more information on the WebDocumentThumbnailer's options and API, see the WebDocu-
mentThumbnailer JavaScript API reference.

Set Annotation Defaults

This is an example of setting the annotation defaults. This will not only affect the appearance
of the annotations drawn by the toolbar buttons, but will also override the WDV default val-
ues in the case where you create a new annotation and don't specify a value that you already
set using this method.

- 94 -

Web Document Viewer

Javascript Code

_viewer.annotations.setDefaults([
{ type: 'ellipse',

fill: {
color: 'red',
opacity: 0.75

},
outline: {

width: 5
}

},
{ type: 'freehand',

fill: {
color: 'purple'

},
outline: {

color: 'green',
width: 10

}
},
{ type: 'text',

fill: {
color: 'yellow'

},
outline: {

color: 'black',
width: 4

},
text: {

value: 'Sticky Note',
font: {

bold: true,
family: 'Trebuchet MS'

}
}

}
]);

Configuring the "Draw Images" menu by calling setImages
Code Snippet

_viewer.annotations.setImages([
{

'name': 'Checkmark',
'src': 'http://###.com/images/Checkmark.png'

},
{

'name': 'A sample image',
'src': '/SampleImages/Sample.jpg'
}

]);

This will result in the following drop down menu:

- 95 -

Chapter 3

Configuring the "Draw Stamps" menu by calling setStamps
Code Snippet

_viewer.annotations.setStamps([
{

'name': 'Approved',
'fill': {

'color': 'green',
'opacity': 0.5

},
'outline': {

'color': '#43BC6F'
},
'text': {

'value': 'This document has been approved',
'align': 'left',
'font': {

'bold': false,
'color': '#B9C89D',
'family': 'Georgia',
'size': 64

}
}

},
{

'name': 'Rejected',
'fill': {

'color': '#DCF1EC',
'opacity': 1

},
'outline': {

'color': '#EFCDB4'
},
'text': {

'value': 'This document has been rejected',
'align': 'left',
'font': {

'italic': true,
'color': '#FC6173',
'family': 'Georgia',
'size': '24px'

}
}

}
]);

This will result in the following drop-down menu:

Creating An Image Annotation On The First Page

This code snippet will create an image annotation on the first page of the Web Document
Viewer. Keep in mind that image annotations, by default, have their 'readonly' property set to
'true', which prevents users from opening the properties panel from the context menu. To
make it so that they can do that, set the property to false when constructing the annotation.
Another important note is that this function cannot be called immediately after constructing
the WDV; at that point, the WDV's annotation controller is not fully initialized, and the

- 96 -

Web Document Viewer

function will fail. It is much better to call it after the 'documentloaded' event has fired, as in
the example below.

Javascript Code

var testImage = {
'type': 'image',
'x': 200,
'y': 200,
'width': 300,
'height': 300,
'src': 'images/testAnno.jpg',
'readonly': false,

};

_viewer.bind('documentloaded', function() {
var ann = _viewer.annotations.createOnPage(testImage, 0);

});

Deleting an annotation

This code snippet will programmatically delete any annotation that the user right-clicks on,
by using the annotationmousedownright event.

Code Snippet

function deleteClickedAnno(e){
var annoToDelete = e.anno;
var currPage = _viewer.getCurrentPageIndex();
var annos = _viewer.annotations.getFromPage(currPage);
var index = annos.indexOf(annoToDelete);

if (index != -1) {
_viewer.annotations.deleteFromPage(currPage, index);

}
}
_viewer.bind('annotationmousedownright', deleteClickedAnno);

Using the Context Menu to Dynamically Change Annotation Properties

This code snippet will alter the context menu that appears when an annotation is right-
clicked. If the annotation is an image, a new option will appear in the context menu that
changes the source of the annotation, by setting the appropriate property in the annotation
object.

For the sake of the example, say that there is an 'approved' field at the end of a document
that, by default, is an image annotation that says "Approval Required". Someone responsible
for approving the application can go through it and, reaching the end of the document and
making their assessment, right-click on the "Approval Required" image annotation to change
it to either "Approved" or "Not Approved" through the context menu.

- 97 -

Chapter 3

Code Snippet

function setImgAnnoAppr(anno){
anno.src = '/Images/Approved_Green.jpg';
anno.update();

}

function setImgAnnoNotAppr(anno){
anno.src = '/Images/Approved_Red.jpg';
anno.update();

}

function changeContextMenu(e, anno, menu){
if (anno.type == 'image'){

$.extend(menu, {
'Is Approved': setImgAnnoAppr,
'Is Not Approved': setImgAnnoNotAppr

});
}

}

_viewer.bind('contextmenu', changeContextMenu);

Setting Extra Properties in an Annotation

This code snippet will set some extra properties in an annotation.

Code Snippet

var ellipse = {
'type': 'ellipse',
'x': 200,
'y': 200,
'width': 300,
'height': 300,
'fill': {

'color': '#8A397E',
'opacity': 1

},
'outline': {

'color': 'red',
'width': 2

},
'extra': {

'userName': 'JaneSmith',
'userID': '1234567'

}
};

var annoEllipse = _viewer.annotations.createOnPage(ellipse, _viewer.getCurrentPageIndex());

- 98 -

Web Document Viewer

WebDocumentThumbnailer Javascript API
The WebDocumentThumbnailer object that gets created on your page enables you to show
thumbnails of documents, including annotations if enabled.

- 99 -

Chapter 3

Constructor & Configuration Parameters

WebDocumentThumbnailer(Config)

This takes a configuration object (a list) that gets used to construct the WebDocu-
mentThumbnailer.

Configuration Parameters:
Config.allowannotations: Boolean

Turns annotation support on or off.

Default is false.

Config.allowdragdrop: Boolean

Allows thumbnail reordering by dragging.

Default is false.

Config.annotationsurl: String

Specifies the relative url to annotation data (of an .xmp file on the
server) that should be displayed along with the displayed thumb-
nails. This is automatically loaded into the configured WebDocu-
mentViewer.

Config.backcolor: String

Defines the background color of each thumbnail. Valid values are
either a color name supported by the CSS color specification, or a
hex code (with the preceding '#' optional.)

Default is '#DCDCDC'.

Config.direction: Atalasoft.Utils.ScrollDirection

Parameters to change the orientation of the thumbnailer. This
defines the main scrolling direction.

Default is Atalasoft.Utils.ScrollDirection.Vertical.

Config.documenturl: String

Specifies the relative url to a document (that is on the server) to be
displayed when the thumbnailer is first opened. This value is auto-
matically passed to the configured WebDocumentViewer, if it's not
null.

Config.dragdelay: Int

Number of milliseconds to wait until a drag start is detected vs
other events.

Default is 250.

Config.hovercolor: String

Defines the mouse hover color of each thumbnail. Valid values are
either a color name supported by the CSS color specification, or a
hex code (with the preceding '#' optional.)

Default is '#667F9F'.

- 100 -

Web Document Viewer

Config.maxwidth: Int

Specifies the maximum amount of pixel width allowed for thumb-
nails

Default is 300.

Config.minwidth: Int

Specifies the minimum amount of pixel width allowed for thumb-
nails.

Default is 80.

Config.pageborderwidth: Int

This specifies the border width around a displayed thumbnail in
pixels.

Default is 1.

Config.pagespacing: Int

This parameter can be used to specify the distance (in pixels)
between thumbnails.

Default is 2.

Config.parent: jQuery Object

This is a required parameter, and is used to specify the jQuery
object that the thumbnailer will be created in.

Example:

var conf ig = {

parent: $('.atala-document-container '),

serverur l: 'MyHandler .ashx'

}

Config.scripturl: String

Use this parameter to specify a location on the server in which all
JavaScript files are put when not in a default location in a project.

Config.selectedcolor: String

Defines the background color of a selected thumbnail. Valid values
are either a color name supported by the CSS color specification, or
a hex code (with the preceding '#' optional.)

Default is '#E0872D'.

Config.selectedhovercolor: String

Defines the mouse hover color of a selected thumbnail. Valid values
are either a color name supported by the CSS color specification, or
a hex code (with the preceding '#' optional.)

Default is '#FFC060'.

Config.selectedindex: Int

This value indicates the initially selected zero-based thumbnail

- 101 -

Chapter 3

index, and will subsequently show that page index in the asso-
ciated WebDocumentViewer, if defined.

Default is 0.

Config.serverurl: String

This is a required parameter, and points to the server handler.

Config.showpagenumber: Boolean

Displays the page number when set to true.

Default is false.

Config.showerrors: Boolean

Set to true for errors to be thrown. If showstatus is true, they will
also be displayed in the toolbar status.

Default is false.

Config.showscrollbars: Boolean

This parameter controls the display of the scroll bars.

Default is true.

Config.thumbpadding: Int

The number of pixels to pad around the thumbnail so that the back-
ground color can be seen.

Default is 8.

Config.thumbsize: Int

The number of pixels representing the desired starting width and
the height of each thumbnail. Leaving this property blank will size
thumbnails to the available width, up to the maxwidth config
option.

Default is undefined.

Config.viewer: Atalasoft.Controls.WebDocumentViewer

Setting this parameter will automatically interlink this WebDocu-
mentThumbnailer with the given WebDocumentViewer, so they
show the same document and annotations.

Default is null.

Public Methods

Thumbnailer

.annotations

Description: Convenience property for annotation access via a linked WebDocumentViewer.
This will be undefined if no viewer has been provided.

See WebDocumentViewer.annotations for more info.

- 102 -

Web Document Viewer

.openUrl

Description: Asynchronously thumbnail and view a document with annotations, if enabled.

openUrl(string docUrl [, string annurl [, function callBack]])

docURL A relative path to a document on your server that you want to display.
This value may be null or an empty string; this will cause the WebDocu-
mentThumbnailer to display nothing.

annURL A relative path to an xmp document of annotations on your server
that you want to display. This value may be null or undefined, which will do
nothing to the existing annotations. An empty string will clear all annotation
data.

callBack A method to execute when the server returns with the document
and/or the annotation data, and it has finished loading in the Viewer.

.next

Description: Convenience method for a linked WebDocumentViewer. This will be undefined if
no viewer has been provided.

See WebDocumentViewer.next for more info.

.previous

Description: Convenience method for a linked WebDocumentViewer. This will be undefined if
no viewer has been provided.

See WebDocumentViewer.previous for more info.

.getZoom

Description: Convenience method for a linked WebDocumentViewer. This will be undefined if
no viewer has been provided.

See WebDocumentViewer.getZoom for more info.

.bind

Description: Attach a handler to an event triggered by the WebDocumentThumbnailer.

bind (string eventName, function handler(e))

eventName The name of the event you want to bind to. See: Events.

handler The function that should be called to handle the event.

bind(array events)

events A map of one or more events and functions to execute.

.unbind

Description: Remove a previously-attached handler to an event.

unbind (string eventName, function handler(e))

eventName The name of the event you want to unbind from. See: Events.

handler The function that you no longer want to handle the event.

unbind(array events)

- 103 -

Chapter 3

events A map of one or more events and functions to unbind.

.getCurrentPageIndex

Description: Convenience method for a linked WebDocumentViewer. This will be undefined if
no viewer has been provided.

See WebDocumentViewer.getCurrentPageIndex for more info.

.getDocumentInfo

Description: Get some properties that describe the currently-open document.
Returns: an object with the following properties:

count The number of pages of the document currently open in the viewer.

size This is an object with the following properties:

width This integer represents the width of the first page only. All
other pages are automatically sized to this one for the purposes of
viewing.

height This integer represents the height of the first page only. All
other pages are automatically sized to this one for the purposes of
viewing.

getDocumentInfo()

.getSelectedPageIndex

Description: Get the 0-based index that corresponds to the currently-selected thumbnail.
Returns: An integer.

getSelectedPageIndex()

.save

Description: Convenience method for a linked WebDocumentViewer. This will be undefined if
no viewer has been provided.

See WebDocumentViewer.save for more info.

.scrollBy

Description: Programmatically scrolls the WebDocumentThumbnailer by the specified dx and
dy.

scrollBy([int dx, int dy [, boolean animated [, function callback]]])

dx Pixel delta to scroll by on the x-axis.

dy Pixel delta to scroll by on the y-axis.

animated Whether the scroll should be animated (true) or instant (false).
Default is false.

callback The function to be executed when the WebDocumentThumbnailer is
finished scrolling.

.scrollTo

Description: Programmatically scrolls the WebDocumentThumbnailer to the specified x and y
coordinates.

- 104 -

Web Document Viewer

scrollTo([int x, int y [, boolean animated [, function callback]]])

x Pixel value to scroll to on the x-axis.

y Pixel value to scroll to on the y-axis.

animated Whether the scroll should be animated (true) or instant (false).
Default is false.

callback The function to be executed when the WebDocumentThumbnailer is
finished scrolling.

.scrollToThumb

Description: Visually scrolls to a given location.

_thumbs.scrollToThumb(index [, callbackFunction]);

scrolls the WDT to ensure the indicated thumbnail is visible

.showPage

Description: Convenience method for a linked WebDocumentViewer. This will be undefined if
no viewer has been provided.

See WebDocumentViewer.showPage for more info.

- 105 -

Chapter 3

Events
In order to handle any of these events, you will have to call the .bind method on the
WebDocumentThumbnailer.

WebDocumentThumbnailer Events

Documentloaded

Description: This event is triggered when the WDV has loaded the document specified either
in the documenturlparameter of the constructor, or the docurl parameter passed into the
.openUrl method.

bind('documentloaded', handler(eventObject))

eventObject The event object passed to the handler is just the default javas-
cript event object.

Thumbdragend

bind('thumbdragend', handler(eventObject).)

eventObject The event object passed to the handler is the default javascript
event object, with the addition of a property named dropindex that represents
the ending index of the drag event.

Thumbdragstart

bind('thumbdragstart', handler(eventObject).)

eventObject The event object passed to the handler is the default javascript
event object, with the addition of a property named dragindex that represents
the starting index of the drag event.

Thumbsreordered

bind('thumbsreordered', handler(eventObject).)

eventObject The event object passed to the handler is the default javascript
event object, with the addition of two properties named dragindex and dropin-
dex that represent the start and ending index of the drag event.

Tumbselected

bind('thumbselected', handler(eventObject))

eventObject The event object passed to the handler is the default javascript
event object, with the addition of an index property that represents the index of
the selected thumbnail.

- 106 -

Atalasoft JoltPdf

Atalasoft JoltPdf

Introduction 108

- 107 -

Chapter 3

Introduction
JoltPdf is a set of tools which can be used for creating or manipulating PDF documents. PDF
is a file format created by Adobe Systems that is used to represent the content and structure
of a document in a way that the appearance of the document will maintain its quality inde-
pendent of the device on which it is displayed. For example, TIFF documents are scanned
images that will only look as good as the resolution of the scan, whereas PDF documents can
contain text and graphic content that do not have a fixed resolution and will render well on
low resolution devices as well as high resolution devices.

In addition, PDF can contain a number of interactive features including hyperlinks, annota-
tions, bookmarks, and so on.

Within JoltPdf, there are two main tools for operating on PDF files:

l PdfDocument - this object is made for doing efficient, document-level manipulation of
PDF documents, including rearranging or deleting existing pages, adding pages from
another document, creating or editing the bookmark tree, creating or editing document
metadata, or combining multiple documents into one.

l PdfGeneratedDocument - this is object is capable of doing everything PdfDocument can
do, but it requires reading in the full content of the document. In addition, PdfGen-
eratedDocument can be used for adding content to existing pages and creating new con-
tent from scratch.

Both PdfDocument and PdfGeneratedDocument have the ability to detect and repair many
types of broken or non-compliant PDF documents.

- 108 -

Programming with JoltPdf

Programming With JoltPdf
Introduction

The PDF document format is a standard format that describes the appearance layout, and to
a certain extent the behavior of a collection of pages. PDF documents are designed to look
consistently good on whatever device is used to display it, whether the device is a computer
screen, a desktop printer, a phototypesetter, or a cell phone. Unlike most image formats, PDF
has no sense of resolution. This means that a document can viewed at arbitrary mag-
nification with little or no loss of information.

The Atalasoft PDF Generating library provides a mechanism for creating PDF documents that
is simple, consistent, and extensible. Since the underlying document format is complicated,
the Atalasoft library is built to separate the document format from the means used to create
the document. Client code needs to concern itself with the content and the mathematical
modeling. The actual production of PDF from this is handled behind the scenes.

In addition to basic shapes, images and text, the Atalasoft library gives to tools for creating
your own shapes from primitive shapes, composites of basic shapes, as well the ability to
stitch all of these together into high level tools for creating documents from very little code.

To create a PDF document, one needs to make a document object, add pages to the doc-
ument, put content onto the pages and save the document. The following example demon-
strates how to make a basic PDF:

PdfGeneratedDocument doc = new PdfGeneratedDocument();

PdfGeneratedPage page = DefaultPages.Letter;

doc.Pages.Add(page);

string font = doc.Resources.Fonts.AddFromFontName(“Times New Roman”);

TextLine line = new TextLine(font, 12, “Hello, PDF”, new PdfPoint(72, 400));

page.DrawingLine.Add(line);

doc.Save(“hello.pdf”);

There are five main components of the authoring library: resources, pages, drawing prim-
itives, shapes, and rendering. Resources are collections of large objects that may be used mul-
tiple times on a page or a document such as fonts or images. Resource objects are named and
are always referred to by name. Pages are objects that contain dimensions as well as a list of
drawings that make the visible contents of the page. Pages may be moved freely from one doc-
ument to another, cloned and serialized. Drawing primitives are objects that can directly gen-
erate PDF page content. Primitives include paths, rectangles, primitive text, and images.
Shapes are higher level objects that are more easily described and controlled and may include
transforms to apply to the shape like scale and rotation. Shapes can be built in terms of prim-
itives or in terms of other shapes. Rendering is the process of turning a collection of pages
and their content into PDF or some other format. Although most applications concerned with
making PDF documents will only need to concern themselves with resources, pages and
shapes, the Atalasoft library is designed to be open and extensible. Advanced applications
can work with primitives directly, create their own higher level shapes or create their own
renders. And while the rendering process is typically invisible to client code, the mechanism
is open so that documents can be created that are limited only by the PDF specification.

Mathematical Model

- 109 -

Chapter 3

In PDF, a page is based on a formal Cartesian coordinate system. In this model, the origin is
in the lower left corner of the page with the positive X axis stretching to the right and the pos-
itive Y axis extending up. Units are in PDF standard units which are 1/72 of an inch.
Coordinates are expressed in floating point numbers. Every page includes an Affine trans-
formation matrix through which all coordinates are pushed before being placed on the page.

For drawing, there are five main primitives: paths, rectangles, images, text, and templates. A
path is a collection of lines and Bezier curves. Paths may be disjoint or non-disjoint. In non-
disjoint paths, all elements are connected. A non-disjoint path may be closed or open. In a
closed path, there is an explicit step to connect from the first element in the path to the last
element in the path. A disjoint path may consist of any number of sub paths which may be
open or closed.

Paths and rectangles are placed on the page. After a shape has been placed on the page, it
may be stroked, filled or clipped. Outlines in the path may be stroked with solid or dashed
lines. Line ends may rounded, square projecting, or square flat. Line joints may be beveled or
mitered. Paths may filled with solid colors. Clipping and filling are done based on one of two
different filling rules, the even-odd rule and the non-zero winding rule.

Images in PDF are considered to be 1 by 1 in PDF units. To place an image on the page, one
sets a transform to set the location and size of the image on the page.

Templates are encapsulated collections of other PDF primitives. In PDF Generating they are
intended for two main purposes: creating reusable page content like letterhead, backgrounds
or watermarks. Templates can also be used for building transparency or blending layers.

Pages

The main page class PdfGeneratedPage is a container class that represents a page in a PDF
document. It contains a set of PdfBounds objects that are used to describe the page’s dimen-
sions as well as PdfDrawingList object that represents the page’s contents. The main dimen-
sions of the page are decribed with the following:

· Media Box – this is the size of the physical media on which the page is to be printed.

· Crop Box – this is the area to which all content on the page will be cropped when
being displayed or printed.

· Bleed Box – this is an area that defines the area that will be used for cropping in a pro-
duction environment, which may include extra area to accommodate cutting folding and trim-
ming equipment.

· Trim Box – this is the area of that page to be trimmed to in a production
environment. It may be smaller than the Media Box to allow for printing instructions, cut
marks, color bars or other printer’s marks.

· Art Box – this is the area of the page that contains meaningful content intended by
the creator.

Each of these areas are measured in PDF units and are subject to PDF’s size limitations (3
units (1/24 inch) minimum and 14400 units (200 inches) maximum).

When a new PdfGeneratedPage is constructed only the MediaBox property is set to an area.
All other boxes are set to empty PdfBounds objects, indicating “not used”. In addition, all
boxes must be either the same size or within the MediaBox.

Standard Page Sizes

- 110 -

Programming with JoltPdf

The object PdfDefaultPages contains a number of static properties that create new PdfGen-
eratedPages initialized to standard sizes. While it is straightforward enough to create a page
with the PdfGeneratedPage constructor and pass in the desired width and height in PDF
units, the factory properties in PdfDefaultPages make it easy to work with common standard
page sizes such as letter, legal, ledger, A4-A6, B4-B6, and C4-C6. For each default size in por-
trait layout (the page is thinner than it is tall), there is also a landscape version of the same.

Creating Stationery

There are a number of ways to create the effect of stationery in the PDF Generating API. Since
each PdfGeneratedPage object contains a list of things that are drawn on the page, it can be
as simple as prepopulating that list with a few items. Here is a simple example that creates a
page that will appear to be a note card:

public PdfGeneratedPage Notecard(double wide, double high, IPdfColor back-
GroundColor)

{

PdfGeneratedPage page = new PdfGeneratedPage(wide * 72, high * 72);

double top = page.MediaBox.Top;

double right = page.MediaBox.Right;

PdfRectangle backGround = new PdfRectangle(page.MediaBox, backGroundColor);

page.DrawingList.Add(backGround);

PdfPath redLine = new PdfPath(PdfColorFactory.FromRgb(.75, .16, .45), 0.5);

redLine.MoveTo(new PdfPoint(0, top - 36));

redLine.LineTo(new PdfPoint(right, top - 36));

page.DrawingList.Add(redLine);

PdfPath blueLines = new PdfPath(PdfColorFactory.FromRgb(.08, .64, .89), 0.5);

for (double y = top - 36 - 18; y >= 0; y -= 18)

{

blueLines.MoveTo(new PdfPoint(0, y));

blueLines.LineTo(new PdfPoint(right, y));

}

page.DrawingList.Add(blueLines);

return page;

}

In this sample, we first make a page that is wide x high in inches. Next we make a back-
ground rectangle the same size as the page and add it to the drawing list. Then we make a
path that is a single red line a half inch (36 PDF units) down from the top and add it to the
page. Finally, we make a disjoint path of blue lines that are evenly spaced by quarter inches
down from the red line. Since each line in the path is defined with a separate MoveTo/LineTo

- 111 -

Chapter 3

pair, the path is disjoint. When the page is returned from this method, there will be three
items in the page’s drawing list: a rectangle, a red path and a blue path.

If you wanted to structurally organize your drawing so that the background of the page was a
single layer, you could use a separate layer for background. Although the PDF file format
doesn’t have strong support for this kind of structural organization, the Atalasoft Generating
library gives you the ability to generate with structure if you choose via the PdfDrawingList
object. In this way, we could rewrite the note card sample to use a PdfDrawingList for the
background:

public PdfGeneratedPage Notecard1(double wide, double high, IPdfColor back-
GroundColor)

{

PdfGeneratedPage page = new PdfGeneratedPage(wide * 72, high * 72);

double top = page.MediaBox.Top;

double right = page.MediaBox.Right;

PdfDrawingList backLayer = new PdfDrawingList();

backLayer.Name = "background";

page.DrawingList.Add(backLayer);

PdfRectangle backGround = new PdfRectangle(page.MediaBox, backGroundColor);

backLayer.Add(backGround);

PdfPath redLine = new PdfPath(PdfColorFactory.FromRgb(.75, .16, .45), 0.5);

redLine.MoveTo(new PdfPoint(0, top - 36));

redLine.LineTo(new PdfPoint(right, top - 36));

backLayer.Add(redLine);

PdfPath blueLines = new PdfPath(PdfColorFactory.FromRgb(.08, .64, .89), 0.5);

for (double y = top - 36 - 18; y >= 0; y -= 18)

{

blueLines.MoveTo(new PdfPoint(0, y));

blueLines.LineTo(new PdfPoint(right, y));

}

backLayer.Add(blueLines);

return page;

}

Every object that can be in a PdfDrawingList implements the interface IPdfGeneratable. One
element of that interface is the property “Name” which is a string that names that item. This

- 112 -

Programming with JoltPdf

property is never used by the PDF Generating library. It is intended for client code. In this
example, the Name property is used to make the backLayer object easy to identify in later
code. For example, if you wanted to create a sense of back-, mid- and foreground layers you
could add three PdfDrawingList objects to the page and name them appropriately.

Resources

PDF has the notion of document resources. These are objects or chunks of data that may be
shared within a page or several pages to reduce the memory needed for the document. There
are several classes of resources within PDF. Of them, the Atalasoft PDF library exposes three
types: fonts, images, and color spaces. In the Atalasoft PDF library, to use a resource, you cre-
ate it and assign it a name. From then on the resource is referred to by name.

The PdfGeneratedDocument class contains a property, Resources, of type GlobalResources.
This object contains properties which represent “managers” for each type of resource. While
each resource manager shares a common base class which contains methods for adding, get-
ting, and querying resources, each manager also contains convenience factory methods spe-
cific to each resource type so that making resources easier.

For example, it might be easier to work with a font by its font name, so The PdfFontManager
has a method that will search through installed fonts and attempt to create a font resource
based on that.

Font Resources

The Atalasoft PDF Generating library supports fonts in PDF via True Type font files. Fonts
resources can be created from a font’s name (ie, Goudy Old Style Bold), a path to a .ttf or .otf
file or a Stream containing the True Type font. Note that .otf files may contain either True
Type or Type 1 fonts, but only True Type fonts are accepted.

When creating a font resource, client code assigns the font a name (or accepts an auto-gen-
erated one). The actual name is inconsequential and is only used as a unique identifier for
the font. Client code should feel free to use any name it wishes. All references to that font
will be made through that name and not the resource object.

Font Embedding

Fonts will be embedded within created PDFs by default, if the font allows it. True Type fonts
contain information about the contexts in which embedding is permissible. When a font is
going to be embedded the PdfFontManager gets asked to provide an embedding policy for that
font. The policy provider looks at the permissions for embedding and returns a
PdfFontEmbeddingPolicy object containing an action to take. These actions include embed,
don’t embed, or throw an exception. The default policy provider will embed where allowed
and throw an exception otherwise. The policy provider could be replaced with a provider that
might instead choose to embed all fonts except for a set of common fonts that are either likely
to be on all systems or are well known to Acrobat so that it creates a “faux font” to match it if
not present.

Color Space Resources

PDF allows the use of calibrated colors within documents. This can be done through specific
calibrated color spaces or through an ICC Color profile. To handle this the PdfCo-
lorSpaceManger object holds a set of color space resources which can be embedded in PDF
documents. See the section on Color for more information.

Image Resources

In PDF images resources are stored as a resolution free stream of two dimensional samples.
The stream is typically compressed in some manner within the file. The Atalasoft model for

- 113 -

Chapter 3

image resource handling to allow the resource manager to accept any object type as an image
and then use a set of installed image compressors to determine how to handle that object
type. When an image resource is created, each handlers are iterated until one determines that
it can handle the object type. That handler then reports a list of possible ways that it can
compress the object into a stream suitable for PDF. A compression method is then selected
and subsequently applied to the object. For example, if presented with a .NET Bitmap object
that is 24 bit RGB, the default handler will report that the image can be compressed using
either DCT (JPEG), Flate, or no compression. A compression selector in the PdfImageMan-
ager then selects the most appropriate compression to use from that list and then the image
is compressed to a stream suitable for PDF.

Image resource streams are kept in a “Stored Stream” object. This object is used to allow a
chunk of data to be written out to an appropriate storage device for later retrieval. The
default StoreStream type uses the systems temp folder for creating file streams that will be
used for storing data. This mechanism can be replaced with other systems if needed by chan-
ging the StreamProvider property in the PdfImageManager object. In addition to the default
TempStreamProvider, there is a MemoryStreamProvider which is equivalent, but keeps com-
pressed streams in memory. This will be fast, but will clearly place a load on memory used.

The PdfImageManager contains a collection of objects that implement the IPd-
fImageCompressor interface for compressing images. By default, this will be initialized to con-
tain an instance of the GdiImageCompressor object for handling .NET Bitmap objects.

In addition, there is an extra assembly for interacting with JoltImage that contains an
AtalaImageCompressor object for handling all AtalaImage types. See the “Integrating with
JoltImage” for more information.

Shapes

The Atalasoft PDF Generating library includes a hierarchy of high-level shapes. Each shape is
meant to fully encapsulate the shape’s parameters and be able to draw itself. There are shape
objects that represent paths, circles, arcs, rounded rectangles, images, and text. Each of these
objects descends from a single class, PdfBaseShape. PdfBaseShape contains the definitions
for the shape’s color (fill and stroke), the line style used for stroking, and the location, scale
and rotation of the object. Shapes that descend from PdfBaseShape typically only have to con-
cern themselves with how they are drawn (how they are filled or stroked) and not with how
they are placed on the page (location, scale, rotation).

PdfPath

Path shapes are one of the fundamental components of PDF rendering. A path is a list of
operations that are performed in sequence to draw the path. There are four operations that
can be performed: move, line, curve and close. For example, you could create a square path
with the following code:

private PdfPath Square(double wide, IPdfColor fillColor)

{

PdfPath path = new PdfPath(fillColor);

path.MoveTo(new PdfPoint(0, 0));

path.LineTo(new PdfPoint(wide, 0));

path.LineTo(new PdfPoint(wide, wide));

path.LineTo(new PdfPoint(0, wide));

path.Close();

- 114 -

Programming with JoltPdf

return path;

}

The path starts with a move operation and traces the outline of the square. Notice that the
square ends with a close operation and not another line. This is because PDF recognizes
closed paths and treats them differently. When path is closed, the PDF viewer will auto-
matically connects a straight line from the last point to the first point and creates a joint to
make a clean corner. If you connect the line directly yourself, the PDF viewer doesn’t know
that it should create a clean corner. The results may not be what you expect.

Left, a square drawn with a close operation; right a square without a close operation.

Curves in PDF are represented by cubic Bézier functions. A Bézier is represented by four
points, a start point and an end point (P0 and P3) and two control points (P1 and P2) and is
represented by the following formula:

where t represents time and ranges from 0.0 to 1.0. B(t) represents a point on the curve at
time t.

Bézier curves have a number of desirable properties including: a small amount of information
(4 points) can represent a wide variety of curves, they can be rendered efficiently, the entire
curve will always be contained within a rectangle bounded by the minima and maxima of the
four points and the segments P0P1 and P2P3 are tangent to curve at the start and end points
respectively.

Example Bézier curves

In the PdfPath shape, you can add a curve using the CurveTo method. This method takes
three points which represent the two control points and the end point of the curve. The start
point of the Bézier will be the last point in the path from any of MoveTo, LineTo or CurveTo
methods.

- 115 -

Chapter 3

Paths can be filled, stroked or clipped. When a line is stroked, there are a variety options that
can be selected for the style of the line, including thickness, joint style, end caps and dashes.
These are all available in the LineStyle property of PdfBaseShape.

The thickness of a line is in PDF units and defaults to 1.0. When set to 0, the PDF viewer is
instructed to render the line in the thinnest possible way. Since this is device-dependent, the
final output will not be consistent from device to device and this should be avoided (consider
the difference between the thinnest possible line on a 96 dpi monitor versus a 2400 dpi
phototypesetter). If a client application wants to create a hairline, it should pick an appro-
priate thickness instead of 0.

The joint style for a path is how consecutive segments are merged together. There are three
possible styles, square, rounded and beveled.

Line joins: square, rounded, beveled.

Paths may be stroked in an arbitrary dash pattern. The pattern is a phase number and a col-
lection of alternating dash lengths and gap lengths. The dash and gap lengths are distances
along the path in PDF units. The phase is how far into the pattern to start a line. The entire
collection of dash and gaps is used until it is exhausted, then it is repeated until the complete
path has been stroked.

Example dash patterns, from top to bottom: [1], [1 2], [0.5], [0.5, 1, 2, 1]

In the example dash patterns, a single entry implies alternating dash and gaps of the same
length. In the bottom example, you can see how complex dashes patterns can be made. Each
pattern above has a phase of 0, meaning that the PDF viewer starts the pattern at the
beginning. If the phase were 0.5, the first example would have started with a half dash then
continued normally.

Paths may be stroked with three different types of ends: butt, round or projecting square.

Line cap examples: butt, round and projecting square.

The final line style is the miter limit. This is a parameter that is used to handle cases when a
path with a highly acute angle will project in a reasonable way. In this picture the path is

- 116 -

Programming with JoltPdf

shown with an acute angle and the full miter is project from the line in blue. The miter limit
prevents the miter from extending out this distance.

The miter limit is a point at which the mitering will be turned off. It is defined by the ratio of
the miter length and the line thickness. When this ratio exceeds the miter limit, mitering will
not be done on the line. Since the miter length is related to the angle between the two lines,
there is also a relationship between miter limit and line join angle:

Where theta is the angle between the two lines.

A miter limit of 2.0 will cut off miters at angles less than 60 degrees. The default miter limit
is 10.

In addition to stroking, paths may be filled with a color. A path may be filled using one of
two techniques, either the non-zero winding rule or the even-odd rule. In the non-zero wind-
ing rule, horizontal rays are shot through the path. Whenever a path segment crosses the ray
going up, one is added to a “winding number”. Whenever a path segment crosses the ray
going down, one is subtracted from the winding number. Whenever the winding number is
non-zero, areas along the ray will be filled. In the even odd rule, rays are shot through the
path. Whenever the ray has crossed an odd number of path segments, areas along the ray
will be filled. The choice of the rule will produce different filled areas in compound paths or
paths that self-intersect.

The same shaped with the non-zero winding rule (left) and the even-odd rule (right)

PdfRectangle

PdfRectangle is a shape that represents a rectangle. In addition to the properties of
PdfBaseShape, it includes a property, Bounds, which represents the area of the rectangle. The
fill method doesn’t affect how a rectangle is filled.

PdfRoundedRectangle

PdfRounded rectangle is a shape that represents a rectangle with rounded corners. In addi-
tion to the normal PdfBaseShape properties, PdfRoundedRectangle includes a property,

- 117 -

Chapter 3

Bounds, which represents the area of the rectangle and a property CurveRadius that rep-
resents the radius of each corner.

PdfCircle

PdfCircle is a representation of a circle from a center and radius. The circle itself is drawn in
PDF using a Bézier path approximation of the circle. By changing the Scale property to a
non-uniform scale you can get an ellipse.

PdfArc

PdfArc represents a circular arc. It consists of a the center and radius of a circle as well as the
start angle and end angle of the arc in degrees. If the property Clockwise is set to true, the arc
will be drawn from the start angle to the end angle in a clockwise direction, otherwise the arc
will be drawn counterclockwise. If the property IncludeWedge is set to true, the center will be
added to the path drawn.

Two PdfArc shapes stroked and filled with IncludeWedge set to false (left) and IncludeWedge
set to true (right).

PdfImageShape

PdfImageShape represents an image placed in a rectangular area on the page. It includes a
Bounds property representing the area that will be covered with the image and ImageName,
the name of an image resource to use to fill the shape. The FillColor, OutlineColor and Clip
properties of PdfBaseShape are ignored.

Text Shapes

There are three main text shapes available, PdfTextLine, PdfTextPath, and PdfTextBox.
PdfTextLine is the simplest of the three. It represents a horizontal line with text on top of it.
Text is drawn along the line as people tend to hand write – the bottoms of most letters will be
tangent to the line, except for letters with descenders (such as g, p, q, y etc.) which will
appear with the descender below the line.

PdfTextPath is similar to PdfTextLine except that instead of a horizontal line, text will follow
any arbitrary set of path operations, including Bézier curves.

PdfTextBox is a shape that draws formatted text on a page. The text will be formatted to fit
the bounds using the text properties.

Making Custom Shapes

- 118 -

Programming with JoltPdf

To make custom shapes, the easiest approach is to subclass the PdfBaseShape object. Con-
sider the task of making a shape that represents a regular polygon. To make a regular poly-
gon, you need a center, a radius and the number of sides. One way to generate the points is
to use get one starting point and rotate it around the center by the angle subtended each side.
In creating a new descendant of PdfBaseShape, you need to write a constructor, a clone
method and a means to draw the shape:

[Serializable]

public class RegularPolygon : PdfBaseShape

{

public RegularPolygon(PdfPoint center, double radius, int sides) :

base(PdfColorFactory.FromGray(0.0),5.0)

{

if (sides < 3) throw new ArgumentException("Polygons must have at least 3 sides");

GeneratePoints(center, radius, sides);

Center = center;

Radius = radius;

Sides = sides;

}

public PdfPoint Center { get; private set; }

public double Radius { get; private set; }

public int Sides { get; private set; }

private void GeneratePoints(PdfPoint center, double radius, int sides)

{

Points = new List<PdfPoint>();

PdfPoint currPoint = new PdfPoint(0, radius);

Points.Add(currPoint + center);

PdfTransform transform = PdfTransform.Rotate(2 * Math.PI/(double)sides);

for (int i = 1; i < sides; i++)

{

currPoint = transform.Transform(currPoint);

Points.Add(currPoint + center);

}

}

public List<PdfPoint> Points { get; private set; }

- 119 -

Chapter 3

protected override PdfBaseShape CloneInstance()

{

return new RegularPolygon(Center, Radius, Sides);

}

protected override void DrawShape(PdfRenderer w)

{

PdfPath path = new PdfPath(this);

for (int i = 0; i < Points.Count - 1; i++)

{

PdfPoint p = Points[i];

if (i == 0) { path.MoveTo(p); }

else { path.LineTo(p); }

}

path.Close();

path.GeneratePdf(w);

}

}

In this example, a private list of points is used to hold the points at the corners of the
polygon. GeneratePoints() creates a start point at (0, radius) and adds successive rotations of
the point to the list. DrawShape is an abstract method defined in PdfBaseShape. Overriding
this method lets us draw the polygon as we see fit – in this case we use a PdfPath object to
draw the shape for us.

Another Way to Create Custom Shapes

Suppose that you want to create a check box shape. A check box could have a property for its
size as well as a property for whether or not it is checked. We could implement this very
simply with a PdfBaseShape:

[Serializable]

public class PdfCheckBoxShape : PdfBaseShape

{

public PdfCheckBoxShape(double size, bool isChecked, IPdfColor outlineColor, double
lineWidth)

: base(outlineColor, lineWidth)

{

Size = size;

IsChecked = isChecked;

- 120 -

Programming with JoltPdf

}

public double Size { get; set; }

public bool IsChecked { get; set; }

protected override PdfBaseShape CloneInstance()

{

return new PdfCheckBoxShape(Size, IsChecked, OutlineColor, Style.Width);

}

protected override void DrawShape(PdfRenderer w)

{

PdfRectangle rect = new PdfRectangle(new PdfBounds(0, 0, Size, Size), Out-
lineColor, Style.Width, FillColor);

rect.GeneratePdf(w);

if (IsChecked)

{

PdfPath path = new PdfPath(OutlineColor, Style.Width);

path.MoveTo(new PdfPoint(0, 0));

path.LineTo(new PdfPoint(Size, Size));

path.MoveTo(new PdfPoint(0, Size));

path.LineTo(new PdfPoint(Size, 0));

path.GeneratePdf(w);

}

}

}

When adding these shapes to a PDF, we get something that looks like this:

Or like this when a fill color has been set:

- 121 -

Chapter 3

This may be satisfactory for your needs, but what if you didn’t want to have a fill color at all
and maybe you feel that PdfBaseShape does too much work for you. In either case, you could
define your own class from the ground up. All you would need to do is create a class that
implements the interface IPdfGeneratable.

[Serializable]

public class PdfSimplestCheckBoxShape : IPdfGeneratable

{

public PdfSimplestCheckBoxShape(double size, bool isChecked, PdfPoint location,
double lineWidth)

{

Size = size;

IsChecked = isChecked;

Location = location;

LineWidth = lineWidth;

}

public double Size { get; set; }

public bool IsChecked { get; set; }

public PdfPoint Location { get; set; }

public double LineWidth { get; set; }

public string Name { get; set; }

public void GeneratePdf(PdfRenderer w)

{

w.DrawingSurface.Begin();

w.DrawingSurface.AddRect(new PdfBounds(Location.X, Location.Y, Size, Size));

if (IsChecked)

{

List<PdfPathOperation> path = new List<PdfPathOperation>();

path.Add(PdfPathOperation.MoveTo(Location));

path.Add(PdfPathOperation.LineTo(Location.X + Size, Location.Y + Size));

path.Add(PdfPathOperation.MoveTo(Location.X, Location.Y + Size));

path.Add(PdfPathOperation.LineTo(Location.X + Size, Location.Y));

w.DrawingSurface.AddPath(path);

}

- 122 -

Programming with JoltPdf

PdfLineStyle style = PdfLineStyle.Default;

style.Width = LineWidth;

w.DrawingSurface.Stroke(style, PdfColorFactory.FromGray(0));

w.DrawingSurface.End();

}

}

In this case, the infrastructure of PdfBaseShape is gone, so we have to implement the method
GeneratePdf. This method is give an object called PdfRenderer which is responsible for cre-
ating content that will go into the pages content. This object itself is an abstraction of the
PDF rendering model and provides a number of operations that make is easy to create correct
PDF content. Within the PdfRenderer object, there is a property called DrawingSurface. The
DrawingSurface is a virtual canvas for performing drawing operations, including paths, rect-
angles, templates, and images. To draw shapes, you add path elements (paths or rectangles)
then either stroke or fill them. Before performing any drawing operations, you must call the
Begin() method and after you are done, you must call the End() method. Begin() and End()
calls may be nested to any depth.

Transformations

The PDF imaging model includes the notion of a current transformation. All objects that are
rendered get pushed through the transformation before being rendered.

Transformations are represented by an Affine transformation matrix which is a 3x3 matrix of
the form:

When a point (x, y) is transformed by the matrix, the output of the transformation will be (

), where and . In the Atalasoft Pdf Generating
library, transformations are represented by the class PdfTransform. Within that class there
are some factory methods for making common transformations.

PdfTransform.Identity() returns a new identity matrix:

PdfTransform.Translate(double x, double y) returns new matrix that will perform a trans-
lation:

PdfTransform.Scale(double s) returns a new matrix that will perform a uniform scale:

- 123 -

Chapter 3

PdfTransform.Scale(double x, double y) returns a new matrix that scales in x and y directions,
possibly by different amounts:

PdfTransform.Rotate(double theta) returns a new matrix that will perform a counter clockwise
rotation by theta radians:

PdfTransform.Skew(double x, double y) performs a two dimensional skew operation by x and
y radians:

PdfTransform includes a property, TransformType that attempts to determine if the transform
is one of the primary transformation types. If the transform type can’t be determined, the
property will be set to PdfTransformType.Other.

To transform a point, use the Transform methods. For example, to rotate a point coun-
terclockwise around the origin, you can do this:

PdfPoint p = new PdfPoint(x, y);

PdfTransform transform = PdfTransform.Rotate(angle);

p = transform.Transform(p);

PdfTransform can also combine transformation by using the Concat() method:

PdfTransform combined = PdfTransform.Rotate(angle);

PdfTransform translate = PdfTransform.Translate(x, y);

combined.Concat(translate);

Note that the Concat operation is not reflexive – a.Concat(b) is not necessarily the same as
b.Concat(a).

In PdfDrawingSurface, there is a method called ApplyTransformation() which takes a
PdfTransform object and Concats it onto the drawing surface’s current transformation. In
this way, transforms are cumulative. Applying a transformation will accumulate changes
into the drawing surface. To undo a transform, there are two approaches. The first is to
apply the inverse transformation:

PdfTransform transform = GetTransform();

if (!transform.IsInvertable())

return;

PdfTransform itransform = transform.GetInverse();

Renderer.DrawingSurface.ApplyTransformation(transform);

- 124 -

Programming with JoltPdf

...perform drawing operations

Renderer.DrawingSurface.ApplyTransformation(itransform);

In order to do this, the specific transform to be applied must have an inverse. In all but
degenerate transformations (scale by 0 or a skew that creates a flat line), there will be an
inverse that can be applied. Using the IsInvertable() method will tell you if an inverse exists.

The second way to undo a transform is to use the GSave() and GRestore() methods that are
part of the PdfRenderer objects. GSave() takes the entire drawing state of the PdfRenderer
and saves it on a stack. GRestore() pops the most recently saved drawing state and restores
it. GSave()/GRestore() performs a great deal more work than saving and restoring the current
matrix. It will also save line style, clipping, and more. Generally speaking, for working with
transformations, it’s best to always avoid degenerate transformations and to apply the trans-
form, perform operations and then apply the inverse.

The power of the cumulative approach to transformation is that it is straight forward to
encapsulate drawing within another transformation. For example, the entire DrawingList of
an existing PdfGeneratedPage could be rendered as a the contents “thumbnail” shape with a
dog-eared page by applying a scale transform, doing a GSave(), clipping to the dog eared page
boundary, calling the DrawingList’s GeneratePdf() method, doing a GRestore(), stroking the
dog-eared page boundary and then undoing the transform.

PdfBaseShape provides indirect access to the transforms by breaking out Translation, Scale,
and Rotation into separate properties and concatenating them together before drawing the
shape.

When any of the Add or Place methods are used in PdfDrawingSurface, an implicit transform
will be applied before the operation and the inverse afterwards. For example, AddRect
(PdfBounds r) is implemented in terms of AddRect(r, PdfTransform.Identity()).

Clipping

In every PDF page there is always an area that clips drawing to a reduced area. The initial
clipping region for any page is the rectangle that defines the page itself. When creating PDF
content, it is possible to change that clipping region. Clipping in PDF is different than clip-
ping in GDI. In GDI, any region can be set as the current clipping region. In PDF when you
request a new clipping region, the result is the intersection of the current clipping region and
the requested one. The net result is that in PDF, it is only possible to reduce the current clip-
ping region or keep it the same. It is, however, possible to save and restore the current clip-
ping region through calls to PdfRenderer.GSave() and PdfRenderer.GRestore().

In this example, a circle is added to the page as a clipping shape and the rectangle added
afterwards will be clipped to the circle:

PdfCircle circle = new PdfCircle(new PdfPoint(72, 600), 100,

PdfColorFactory.FromGray(1));

circle.Clip = true;

page.DrawingList.Add(circle);

PdfRectangle rect = new PdfRectangle(new PdfBounds(72, 600, 288, 72),

PdfColorFactory.FromGray(0), 6, PdfColorFactory.FromRgb(0.1, 0, .9));

page.DrawingList.Add(rect);

which produces this output:

- 125 -

Chapter 3

Since clipping is permanent outside of calls to PdfRenderer.GSave() and PdfRen-
derer.GRestore(), there are two IPdfGeneratable objects named GSave() and GRestore() which
make those calls for you. By modifying the previous sample, the clipping region can be saved
and restored:

page.DrawingList.Add(new GSave());

PdfCircle circle = new PdfCircle(new PdfPoint(72, 600), 100,

PdfColorFactory.FromGray(1));

circle.Clip = true;

page.DrawingList.Add(circle);

PdfRectangle rect = new PdfRectangle(new PdfBounds(72, 600, 288, 72),

PdfColorFactory.FromGray(0), 6, PdfColorFactory.FromRgb(0.1, 0, .9));

page.DrawingList.Add(rect);

page.DrawingList.Add(new GRestore());

rect = new PdfRectangle(new PdfBounds(36, 636, 400, 18),

PdfColorFactory.FromRgb(1, 0, 0));

page.DrawingList.Add(rect);

which produces the following output:

As with any filled shape, clipping to a path or shape is done via either the non-zero winding
rule or the even odd rule.

Images

The simplest way to work with images is to use the PdfImageShape object. While this object
inherits from PdfBaseShape, it ignores the color, style and clip properties. A PdfImageShape
is constructed with an image resource name and a PdfBounds that describes where the image
is to be placed and its size. Since multiple copies of images can cause PDF files to get large,
images are considered to be sharable resources and the actual image data is retrieved from the
GlobalResources object associated only at the time that the PDF needs to be written.

A simple example of using the PdfImageShape is as follows:

int width = 0, height = 0;

using (Bitmap bm = Bitmap.FromFile("wolf.bmp") as Bitmap)

- 126 -

Programming with JoltPdf

{

width = bm.Width; height = bm.Height;

doc.Resources.Images.Add("wolf", doc.Resources.Images.FromImage(bm));

}

PdfImageShape image = new PdfImageShape("wolf",

new PdfBounds(72, 72, width / 2.0, height / 2.0));

page.DrawingList.Add(image);

In this case a .NET Bitmap object is added to the Images resource manager with the name
“wolf” and then is later used by the PdfImageShape.

The PdfImageManager is built to accept an extensible set of types that can represent images.
When an object is presented as an image, the PdfImageManager finds a compressor that can
handle that image and with the compressor, it determines the appropriate type of com-
pression to apply to the presented image and the compression parameters needed. The image
data is then compressed and cached. When a PDF is written, any images that were used in
that PDF are written by retrieving the compressed image data and writing it into the PDF in
the correct format.

Compressors are managed through the Compressors property of PdfImageManager, which is a
collection of objects that implement IPdfImageCompressor. The default implementation
includes the GdiImageCompressor object which handles Bitmap objects in 24 bit rgb color, 32
bit color with no alpha, 32 bit color with alpha, 16 bit gray, and 1 bit indexed.

Compressors are selected by their ability to handle a particular object type. For any given
object, a compressor is asked if it can handle the object at a particular “skill”. Skills are an
indication of the type of work needed to create the actual image data and includes:

· Perfect – the image is handled as is with no changes.

· IncreaseInformation – the image is handled, but the output image will have more
information (for example, a compressor might not handle 1-bit perfectly, but instead converts
it to 24 bit rgb color).

· DecreaseInformation – the image is handled, but the output image will have less
information (for example, a compressor might not handle 48 bit rgb, but reduces it to 24 bit
rgb).

For any given image format, there may be a number of different codecs that could be used to
compress that image. When an IPdfImageCompressor has been selected, it will return a col-
lection of PdfImageCodec enums that describe how the image will be compressed. Before com-
pressing the image data, the PdfImageManager calls a CompressionSelector with the set of
available PdfImageCodecs and returns back a PdfImageCompression object which fully
describes all the parameters need to compress the image data. The default Com-
pressionSelector always chooses the first compression in the list.

When an image is compressed and cached, the PdfImageManager uses a IStoredStreamPro-
vider object to provide a way to get at the cache later. The default implementation is the Tem-
pFileStreamProvider, which creates a temporary file for the compressed stream for retrieving
later. There is also a MemoryStreamProvider that keeps compressed image data in memory.
In most cases, it will not be necessary to change the default selections, but every step is the
process is replaceable if need be.

Colors

- 127 -

Chapter 3

The color model in PDF is very flexible. Colors are associated with a notion of a current color
space. Color spaces can include RGB, Gray, CMYK, Lab, and others. Color spaces may also
be calibrated or uncalibrated. The Atalasoft PDF Generating library gives you access to colors
through a color factory which hides the complexity of the PDF color model. To make a color,
use the PdfColorFactory static methods FromRgb, FromColor, FromGray, or FromCmyk.
Each of these methods will return a new IPdfColor object that represents the requested color.
Color channel values go from 0.0, representing the minimum value, to 1.0, representing the
maximum value. Colors may be associated with the name of a PdfColorSpaceResource object.
If a color has a resource name, then the color will be a calibrated color, possibly with an asso-
ciated ICC color profile.

To use RGB colors with an ICC color profile, you can use the resource name “sRgb” as the
resource name for your colors. This uses the “standard” RGB ICC color profile which is
always available in the color space resources. While there will always be a profile named
“sRgb”, it is better to use the property DefaultRgbColorSpace as the default resource name.
This allows you code to change the name of the default RGB color space resource without
changing the calibration of any colors already selected with the previous default.

To add additional color profiles to the resources, you only need a stream, path or the raw
data itself. For example, you could use the following to add in a new ICC profile:

string csname = resources.ColorSpaces.AddFromFile("mycolorprofile.icm");

IPdfColor color = PdfColorFactory.FromRgb(1.0, .8, .8, csname);

Note that it is up to client code to create colors that are in the appropriate color space for a
given resource. In the previous example, if the color profile had been for a CMYK color space,
the code requesting an RGB color would be in error and may result in an invalid PDF. In
addition to a standard RGB color space, there is also a calibrated gray color space
preinstalled. The calibrated gray color space has the resource name “CalGray” and is also
accessible using the string property DefaultGrayColorSpace. While there is a property for a
default CMYK color space, there is no default installed. A standard CMYK color profile can be
downloaded from Microsoft from the link http://msdn.microsoft.com/en-us/win-
dows/hardware/gg487391.

All color space resources include a property called ColorSpaceType which can be used to find
the type of color space represented by the resource.

Rendering

The PdfGeneratedDocument and the PdfGeneratedPage classes are representations of PDF doc-
uments and PDF pages, but they are not actual documents or pages. No PDF is created until
the document is saved. The process of saving a document to PDF is part of a more general
rendering process and in this case, the output of rendering is a PDF document.

The rendering process involves creating an object that is a subclass of the abstract Docu-
mentRenderer class. DocumentRenderer defines the overall process that is used to render a
document including firing events, error handling and page rendering. The overall process fol-
lows this outline:

1. Notify that the document has begun

2. Render each page

a. Notify that a page has begun

b. Construct a PdfRenderer object for the page

c. Generate the page

d. Notify that the page has finished

- 128 -

http://msdn.microsoft.com/en-us/windows/hardware/gg487391
http://msdn.microsoft.com/en-us/windows/hardware/gg487391

Programming with JoltPdf

3. Notify that the document has finished

Behind the scenes, the PdfGeneratedDocument.Save() method creates a PdfRenderer object
and uses it to create the PDF. In most cases, it will not be necessary to use any other means
to save a PDF document. The PDF Generating library is robust for creating documents that
may have a thousand pages or more without having to worry about memory use. However, in
some cases client code may wish to use another mechanism to produce documents. In this
case, the client code can construct the PdfRenderer directly and use the Render method that
takes a PdfGeneratedDocument and an ICollection<BasePage>. In this way client code can
use their own collections of pages instead.

Round Trip Documents

PDF documents can be created with a number of different tools and the process or toolset
used in their creation determines the actual PDF data content, which in turn may bear little
or no resemblance to the original data structures. As such, PDF is often considered to be a
write-only or final format. The Atalasoft PDF Generating toolkit provides some means around
this limitation. If you create a PDF from a PdfGeneratedDocument object and set the
EmbedGeneratedContent property to true, then after the PDF content has been rendered, the
DrawingList object in the PdfGeneratedPage will be serialized and embedded in the PDF so
that it can be retrieved later and rebuilt.

In other words, you can get full round-trip editing of PDFs by embedding your Generated con-
tent within the PDF itself. This also means that shape objects like PdfCircle which generate
Bezier curves in the final PDF will come back as PdfCircle objects and not as a PdfPath object.

Embedding the Generated content adds a moderate amount of overhead to the final PDF, but
resource objects do not count in this overhead as these resources will get rebuilt from the PDF
content itself.

Mixed Document Pages

The Atalasoft PDF Generating toolkit includes the ability to import pages from the Atalasoft
PdfDocument object. For example, you can dynamically insert a cover page into an existing
document or easily pull in a page, say a legal disclaimer, from an existing PDF. PdfPage
objects from the Pages property of PdfDocument also inherit from the BasePage object and
can therefore go into the Pages collection of a PdfGeneratedDocument.

Integrating with JoltImage

In addition to the main assembly, there is an additional assembly, Atalasoft.PdfDoc.Bridge.
This assembly provides a bridge between JoltImage classes and the PDF Generating classes.
The main class is the AtalaImageCompressor. To use this class, make an instance of it and
add it to the Compressors collection:

PdfGeneratedDocument doc = new PdfGeneratedDocument();

doc.Resources.Images.Compressors.Insert(0, new AtalaImageCompressor());

this will provide tools that will allow the PdfImageManager method FromImage to accept
AtalaImage objects. All pixel formats are accepted by the AtalaImageCompressor. In addi-
tion, if the AtalaImageCompressor object is constructed with instances of the Atalasoft Jp2En-
coder and Jb2Encoder objects, then images can be compressed using JPX and JBIG2
encoding.

There is also another image compressor, the AtalaJpegStreamCompressor. This compressor
accepts a .NET stream object and if the stream contains a JPEG image, it will create an image

- 129 -

Chapter 3

resource with the already compressed stream and will not degrade the image by decoding and
re-encoding it.

To make this process easier, AtalaImageCompressor has a static factory method called
CreateDocument which will create a new, empty PdfGeneratedDocument object with the
AtalaImageCompressor and AtalaJpegStreamCompressor preinstalled:

PdfGeneratedDocument doc = AtalaImageCompressor.CreateDocument();

PdfGeneratedDocument doc1 = AtalaImageCompressor.CreateDocument(new Jp2Encoder
(), null);

string imName = doc.Resources.Images.AddImage(atalaImage);

string imName1 = doc1.Resources.Images.AddImage(atalaImage);

In this example, doc1 is created with the Atalasoft Jp2Encoder which will provide JPX com-
pression, if it is available.

Since AtalaImage objects may contain calibrated color profiles through the ColorProfile prop-
erty, it is advantageous to pass this on to the generated PDF. This can be done manually, by
creating a PdfColorSpace resource through the PdfColorSpaceManager, but it can be done auto-
matically via the static method AddImageResource in the AtalaImageCompressor:

AtalaImage image = new AtalaImage(200, 200, PixelFormat.Pixel24bppBgr);

image.ColorProfile = ColorProfile.FromSrgb();

string[] names = AtalaImageCompressor.AddImageResource(doc.Resources, image);

In this AddImageResource will first see if the image has a non-null ColorProfile and if so it
will create a PdfColorSpaceResource for that ColorProfile and will then make a PdfImageRe-
source for the AtalaImage using the created PdfColorSpaceResource. The method returns and
array of two strings. The first string is the name of the image resource and the second will be
the name of the color space resource or null if there was no color profile.

When working with PdfImageShape objects, it is necessary to size the resulting object to PDF
dimensions. This can be done automatically by using the static methods ImageSize and
ImageSizeAt in AtalaImageCompressor. Given an AtalaImage object, these methods return a
PdfBounds object that is sized in PDF units to match the image’s real-world dimensions as
specified by the Width, Height, and Resolution property of the image. If the units are not spe-
cified in the resolution, they will be treated as if they were pixels per inch.

AtalaImage image = new AtalaImage(pathToImage, null);

string[] names = AtalaImageCompressor.AddImageResource(doc.Resources, image);

PdfImageShape shape = new PdfImageShape(names[0], AtalaImageCompressor.ImageSize
(image));

Finally, there are a pair of utility methods in AtalaImageCompressor to make
PdfImageShapes as automatically as possible. They are called CreateImageShape() and
CreateImageShapeAt(). Both are passed the PdfGeneratedDocument Resources property and
the source AtalaImage and return a new PdfImageShape object representing that image.
CreateImageShapeAt() also takes an x and y in PDF coordinates specifying location of the
lower left corner of the image. Note that once a PdfImageResource or PdfImageShape object

- 130 -

Programming with JoltPdf

has been created from an AtalaImage, the source image is no longer necessary and may be dis-
posed freely. The PdfImageShape object and the PdfImageResource are themselves very light-
weight when compared with the original AtalaImage as the actual image data will have been
written out to a temporary stream on resource creation and is kept out of memory entirely –
even at the point of calling PdfAuthoredDocument.Save(), the data is streamed across from
the temporary stream to the final PDF and never stays in memory beyond buffering.

- 131 -

Chapter 3

Introduction
The PDF document format is a standard format that describes the appearance layout, and to
a certain extent the behavior of a collection of pages. PDF documents are designed to look
consistently good on whatever device is used to display it, whether the device is a computer
screen, a desktop printer, a phototypesetter, or a cell phone. Unlike most image formats, PDF
has no sense of resolution. This means that a document can viewed at arbitrary mag-
nification with little or no loss of information.

The Atalasoft PDF Generating library provides a mechanism for creating PDF documents that
is simple, consistent, and extensible. Since the underlying document format is complicated,
the Atalasoft library is built to separate the document format from the means used to create
the document. Client code needs to concern itself with the content and the mathematical
modeling. The actual production of PDF from this is handled behind the scenes.

In addition to basic shapes, images and text, the Atalasoft library gives to tools for creating
your own shapes from primitive shapes, composites of basic shapes, as well the ability to
stitch all of these together into high level tools for creating documents from very little code.

To create a PDF document, one needs to make a document object, add pages to the doc-
ument, put content onto the pages and save the document. The following example demon-
strates how to make a basic PDF:

PdfGeneratedDocument doc = new PdfGeneratedDocument();

PdfGeneratedPage page = DefaultPages.Letter;

doc.Pages.Add(page);

string font = doc.Resources.Fonts.AddFromFontName(“Times New Roman”);

TextLine line = new TextLine(font, 12, “Hello, PDF”, new PdfPoint(72, 400));

page.DrawingLine.Add(line);

doc.Save(“hello.pdf”);

There are seven main components of the authoring library: resources, pages, drawing prim-
itives, shapes, forms, annotations and rendering. Resources are collections of large objects
that may be used multiple times on a page or a document such as fonts or images. Resource
objects are named and are always referred to by name. Pages are objects that contain dimen-
sions as well as a list of drawings that make the visible contents of the page. Pages may be
moved freely from one document to another, cloned and serialized. Drawing primitives are
objects that can directly generate PDF page content. Primitives include paths, rectangles,
primitive text, and images. Shapes are higher level objects that are more easily described and
controlled and may include transforms to apply to the shape like scale and rotation. Shapes
can be built in terms of primitives or in terms of other shapes. Rendering is the process of
turning a collection of pages and their content into PDF or some other format. Although
most applications concerned with making PDF documents will only need to concern them-
selves with resources, pages and shapes, the Atalasoft library is designed to be open and
extensible. Advanced applications can work with primitives directly, create their own higher
level shapes or create their own renderers. And while the rendering process is typically invis-
ible to client code, the mechanism is open so that documents can be created that are limited
only by the PDF specification.

- 132 -

Programming with JoltPdf

Mathematical Model
In PDF, a page is based on a formal Cartesian coordinate system. In this model, the origin is
in the lower left corner of the page with the positive X axis stretching to the right and the pos-
itive Y axis extending up. Units are in PDF standard units which are 1/72 of an inch.
Coordinates are expressed in floating point numbers. Every page includes an Affine trans-
formation matrix through which all coordinates are pushed before being placed on the page.
Note that this differs from conventional image coordinates where the origin is in the upper
left corner of the image and the positive Y axis extends down.

For drawing, there are five main primitives: paths, rectangles, images, text, and templates. A
path is a collection of lines and Bezier curves. Paths may be disjoint or non-disjoint. In non-
disjoint paths, all elements are connected. A non-disjoint path may be closed or open. In a
closed path, there is an explicit step to connect from the first element in the path to the last
element in the path. A disjoint path may consist of any number of sub paths which may be
open or closed.

Paths and rectangles are placed on the page. After a shape has been placed on the page, it
may be stroked, filled or clipped. Outlines in the path may be stroked with solid or dashed
lines. Line ends may rounded, square projecting, or square flat. Line joints may be beveled or
mitered. Paths may filled with solid colors. Clipping and filling are done based on one of two
different filling rules, the even-odd rule and the non-zero winding rule.

Images in PDF are considered to be 1 by 1 in PDF units. To place an image on the page, one
sets a transform to set the location and size of the image on the page.

Templates are encapsulated collections of other PDF primitives. In PDF Generating they are
intended for two main purposes: creating reusable page content like letterhead, backgrounds
or watermarks. Templates can also be used for building transparency or blending layers.

- 133 -

Chapter 3

Transforms
The PDF imaging model includes the notion of a current transformation. All objects that are
rendered get pushed through the transformation before being rendered.

Transformations are represented by an Affine transformation matrix which is a 3x3 matrix of
the form:

When a point (x, y) is transformed by the matrix, the output of the transformation will be (

), where and . In the Atalasoft Pdf Generating
library, transformations are represented by the class PdfTransform. Within that class there
are some factory methods for making common transformations.

PdfTransform.Identity() returns a new identity matrix:

PdfTransform.Translate(double x, double y) returns new matrix that will perform a trans-
lation:

PdfTransform.Scale(double s) returns a new matrix that will perform a uniform scale:

PdfTransform.Scale(double x, double y) returns a new matrix that scales in x and y directions,
possibly by different amounts:

PdfTransform.Rotate(double theta) returns a new matrix that will perform a counter clockwise
rotation by theta radians:

PdfTransform.Skew(double x, double y) performs a two dimensional skew operation by x and
y radians:

- 134 -

Programming with JoltPdf

PdfTransform includes a property, TransformType that attempts to determine if the transform
is one of the primary transformation types. If the transform type can’t be determined, the
property will be set to PdfTransformType.Other.

To transform a point, use the Transform methods. For example, to rotate a point coun-
terclockwise around the origin, you can do this:

Installing the AtalaJpegStreamCompressor

C# Copy Code
PdfPoint p = new PdfPoint(x, y);
PdfTransform transform = PdfTransform.Rotate(angle);
p = transform.Transform(p);

PdfTransform can also combine transformation by using the Concat() method:

Installing the AtalaJpegStreamCompressor

C# Copy Code
PdfTransform combined = PdfTransform.Rotate(angle);
PdfTransform translate = PdfTransform.Translate(x, y);
combined.Concat(translate);

Note that the Concat operation is not reflexive – a.Concat(b) is not necessarily the same as
b.Concat(a).

In PdfDrawingSurface, there is a method called ApplyTransformation() which takes a
PdfTransform object and Concats it onto the drawing surface’s current transformation. In
this way, transforms are cumulative. Applying a transformation will accumulate changes
into the drawing surface. To undo a transform, there are two approaches. The first is to
apply the inverse transformation:

Installing the AtalaJpegStreamCompressor

C# Copy Code
PdfTransform transform = GetTransform();
if (!transform.IsInvertable())

return;
PdfTransform itransform = transform.GetInverse();

Renderer.DrawingSurface.ApplyTransformation(transform);
...perform drawing operations
Renderer.DrawingSurface.ApplyTransformation(itransform);

In order to do this, the specific transform to be applied must have an inverse. In all but
degenerate transformations (scale by 0 or a skew that creates a flat line), there will be an
inverse that can be applied. Using the IsInvertable() method will tell you if an inverse exists.

The second way to undo a transform is to use the GSave() and GRestore() methods that are
part of the PdfRenderer objects. GSave() takes the entire drawing state of the PdfRenderer
and saves it on a stack. GRestore() pops the most recently saved drawing state and restores
it. GSave()/GRestore() performs a great deal more work than saving and restoring the current
matrix. It will also save line style, clipping, and more. Generally speaking, for working with
transformations, it’s best to always avoid degenerate transformations and to apply the trans-
form, perform operations and then apply the inverse.

The power of the cumulative approach to transformation is that it is straight forward to
encapsulate drawing within another transformation. For example, the entire DrawingList of
an existing PdfGeneratedPage could be rendered as a the contents “thumbnail” shape with a

- 135 -

Chapter 3

dog-eared page by applying a scale transform, doing a GSave(), clipping to the dog eared page
boundary, calling the DrawingList’s GeneratePdf() method, doing a GRestore(), stroking the
dog-eared page boundary and then undoing the transform.

PdfBaseShape provides indirect access to the transforms by breaking out Translation, Scale,
and Rotation into separate properties and concatenating them together before drawing the
shape.

When any of the Add or Place methods are used in PdfDrawingSurface, an implicit transform
will be applied before the operation and the inverse afterwards. For example, AddRect
(PdfBounds r) is implemented in terms of AddRect(r, PdfTransform.Identity()).

- 136 -

Programming with JoltPdf

PdfGeneratedDocument
For creating or modifying exist PDF documents, use the PdfGeneratedDocument object.
Unlike the PdfDocument object, the PdfGeneratedDocument object allows you to directly
manipulate the content and details of PDF documents to a much greater depth (and is also
more resource intensive). Strictly speaking, PdfGeneratedDocument offers a superset of the fea-
tures in PdfDocument.

With both PdfGeneratedDocument and PdfDocument, you can rearrange or delete pages, add
pages from other documents, rotate pages, set document permissions, create or modify book-
marks, encrypt or decrypt documents, set automatic printing, or create or edit document
metadata. With PdfGeneratedDocument, you can replace images in a document, add new
pages with new content, add content to existing pages, create or edit annotations, create and
edit data collection forms, import SVG artwork, and define high level shapes.

PdfGeneratedDocument can be the cornerstone of a report generation system, a document
format converter, a document review system, or a print driver. Since content created within a
PdfGeneratedDocument can be serialized and embedded within the output PDF itself, it is
easy to create content and read it back for editing.

- 137 -

Chapter 3

Pages
The main page class PdfGeneratedPage is a container class that represents a page in a PDF
document. It contains a set of PdfBounds objects that are used to describe the page’s dimen-
sions as well as PdfDrawingList object that represents the page’s contents. The main dimen-
sions of the page are described with the following:

· Media Box – this is the size of the physical media on which the page is to be printed.

· Crop Box – this is the area to which all content on the page will be cropped when
being displayed or printed.

· Bleed Box – this is an area that defines the area that will be used for cropping in a pro-
duction environment, which may include extra area to accommodate cutting folding and trim-
ming equipment.

· Trim Box – this is the area of that page to be trimmed to in a production environment.
It may be smaller than the Media Box to allow for printing instructions, cut marks, color bars
or other printer’s marks.

· Art Box – this is the area of the page that contains meaningful content intended by the
creator.

Each of these areas are measured in PDF units and are subject to PDF’s size limitations (3
units (1/24 inch) minimum and 14400 units (200 inches) maximum).

When a new PdfGeneratedPage is constructed only the MediaBox property is set to an area.
All other boxes are set to empty PdfBounds objects, indicating “not used”. In addition, all
boxes must be either the same size or within the MediaBox.

The object PdfDefaultPages contains a number of static properties that create new PdfGen-
eratedPages initialized to standard sizes. While it is straightforward enough to create a page
with the PdfGeneratedPage constructor and pass in the desired width and height in PDF
units, the factory properties in PdfDefaultPages make it easy to work with common standard
page sizes such as letter, legal, ledger, A4-A6, B4-B6, and C4-C6. For each default size in por-
trait layout (the page is thinner than it is tall), there is also a landscape version of the same.

- 138 -

Programming with JoltPdf

Creating Stationery
There are a number of ways to create the effect of stationery in the PDF Generating API. Since
each PdfGeneratedPage object contains a list of things that are drawn on the page, it can be
as simple as prepopulating that list with a few items. Here is a simple example that creates a
page that will appear to be a note card:

In this sample, we first make a page that is wide x high in inches. Next we make a back-
ground rectangle the same size as the page and add it to the drawing list. Then we make a
path that is a single red line a half inch (36 PDF units) down from the top and add it to the
page. Finally, we make a disjoint path of blue lines that are evenly spaced by quarter inches
down from the red line. Since each line in the path is defined with a separate MoveTo/LineTo
pair, the path is disjoint. When the page is returned from this method, there will be three
items in the page’s drawing list: a rectangle, a red path and a blue path.

public PdfGeneratedPage Notecard(double wide, double high, PdfColor back-
GroundColor)

{

PdfGeneratedPage page = new PdfGeneratedPage(wide * 72, high * 72);

double top = page.getMediaBox().getTop();

double right = page.getMediaBox().getRight();

PdfRectangle backGround = new PdfRectangle(page.getMediaBox(), back-
GroundColor);

page.getDrawingList().add(backGround);

PdfPath redLine = new PdfPath(PdfColorFactory.fromRgb(.75, .16, .45), 0.5);

redLine.moveTo(new PdfPoint(0, top - 36));

redLine.lineTo(new PdfPoint(right, top - 36));

page.getDrawingList().add(redLine);

PdfPath blueLines = new PdfPath(PdfColorFactory.fromRgb(.08, .64, .89), 0.5);

for (double y = top - 36 - 18; y >= 0; y -= 18)

{

blueLines.moveTo(new PdfPoint(0, y));

blueLines.lineTo(new PdfPoint(right, y));

}

page.getDrawingList().add(blueLines);

return page;

- 139 -

Chapter 3

}

If you wanted to structurally organize your drawing so that the background of the page was a
single layer, you could use a separate layer for background. Although the PDF file format
doesn’t have strong support for this kind of structural organization, the Atalasoft Generating
library gives you the ability to generate with structure if you choose via the PdfDrawingList
object. In this way, we could rewrite the note card sample to use a PdfDrawingList for the
background:

publicPdfGeneratedPage Notecard1(double wide, double high, IPdfColor back-
GroundColor)

{

PdfGeneratedPage page = newPdfGeneratedPage(wide * 72, high * 72);

double top = page.MediaBox.Top;

double right = page.MediaBox.Right;

PdfDrawingList backLayer = newPdfDrawingList();

backLayer.Name = "background";

page.DrawingList.Add(backLayer);

PdfRectangle backGround = newPdfRectangle(page.MediaBox, backGroundColor);

backLayer.Add(backGround);

PdfPath redLine = newPdfPath(PdfColorFactory.FromRgb(.75, .16, .45), 0.5);

redLine.MoveTo(newPdfPoint(0, top - 36));

redLine.LineTo(newPdfPoint(right, top - 36));

backLayer.Add(redLine);

PdfPath blueLines = newPdfPath(PdfColorFactory.FromRgb(.08, .64, .89), 0.5);

for (double y = top - 36 - 18; y >= 0; y -= 18)

{

blueLines.MoveTo(newPdfPoint(0, y));

blueLines.LineTo(newPdfPoint(right, y));

}

backLayer.Add(blueLines);

return page;

}

Every object that can be in a PdfDrawingList implements the interface IPdfGeneratable. One
element of that interface is the property “Name” which is a string that names that item. This
property is never used by the PDF Generating library. It is intended for client code. In this

- 140 -

Programming with JoltPdf

example, the Name property is used to make the backLayer object easy to identify in later
code. For example, if you wanted to create a sense of back-, mid- and foreground layers you
could add three PdfDrawingList objects to the page and name them appropriately.

- 141 -

Chapter 3

Clipping
In every PDF page there is always an area that clips drawing to a reduced area. The initial
clipping region for any page is the rectangle that defines the page itself. When creating PDF
content, it is possible to change that clipping region. Clipping in PDF is different than clip-
ping in GDI. In GDI, any region can be set as the current clipping region. In PDF when you
request a new clipping region, the result is the intersection of the current clipping region and
the requested one. The net result is that in PDF, it is only possible to reduce the current clip-
ping region or keep it the same. It is, however, possible to save and restore the current clip-
ping region through calls to PdfRenderer.GSave() and PdfRenderer.GRestore().

In this example, a circle is added to the page as a clipping shape and the rectangle added
afterwards will be clipped to the circle:

Clipping to a Circle

which produces this output:

Since clipping is permanent outside of calls to PdfRenderer.GSave() and PdfRen-
derer.GRestore(), there are two IPdfGeneratable objects named GSave() and GRestore() which
make those calls for you. By modifying the previous sample, the clipping region can be saved
and restored:

Saving and Restoring a Clipping Area

which produ

ces the following output:

As with any filled shape, clipping to a path or shape is done via either the non-zero winding
rule or the even odd rule.

- 142 -

Programming with JoltPdf

Colors
The color model in PDF is very flexible. Colors are associated with a notion of a current color
space. Color spaces can include RGB, Gray, CMYK, Lab, and others. Color spaces may also
be calibrated or uncalibrated. The Atalasoft PDF Generating library gives you access to colors
through a color factory which hides the complexity of the PDF color model. To make a color,
use the PdfColorFactory static methods FromRgb, FromColor, FromGray, or FromCmyk.
Each of these methods will return a new IPdfColor object that represents the requested color.
Color channel values go from 0.0, representing the minimum value, to 1.0, representing the
maximum value. Colors may be associated with the name of a PdfColorSpaceResource object.
If a color has a resource name, then the color will be a calibrated color, possibly with an asso-
ciated ICC color profile.

To use RGB colors with an ICC color profile, you can use the resource name “sRgb” as the
resource name for your colors. This uses the “standard” RGB ICC color profile which is
always available in the color space resources. While there will always be a profile named
“sRgb”, it is better to use the property DefaultRgbColorSpace as the default resource name.
This allows you code to change the name of the default RGB color space resource without
changing the calibration of any colors already selected with the previous default.

To add additional color profiles to the resources, you only need a stream, path or the raw
data itself. For example, you could use the following to add in a new ICC profile:

Adding an ICC Color Profile

Java Copy Code
string csname = resources.getColorSpaces().addFromFile
("mycolorprofile.icm");

PdfColor color = PdfColorFactory.fromRgb(1.0, .8, .8, csname);

Note that it is up to client code to create colors that are in the appropriate color space for a
given resource. In the previous example, if the color profile had been for a CMYK color space,
the code requesting an RGB color would be in error and may result in an invalid PDF. In
addition to a standard RGB color space, there is also a calibrated gray color space
preinstalled. The calibrated gray color space has the resource name “CalGray” and is also
accessible using the string property DefaultGrayColorSpace. While there is a property for a
default CMYK color space, there is no default installed. A standard CMYK color profile can be
downloaded from Microsoft from the link http://msdn.microsoft.com/en-us/win-
dows/hardware/gg487391.

All color space resources include a property called ColorSpaceType which can be used to find
the type of color space represented by the resource.

- 143 -

http://msdn.microsoft.com/en-us/windows/hardware/gg487391
http://msdn.microsoft.com/en-us/windows/hardware/gg487391

Chapter 3

Rendering
The PdfGeneratedDocument and the PdfGeneratedPage classes are representations of PDF doc-
uments and PDF pages, but they are not actual documents or pages. No PDF is created until
the document is saved. The process of saving a document to PDF is part of a more general
rendering process and in this case, the output of rendering is a PDF document.

The rendering process involves creating an object that is a subclass of the abstract Docu-
mentRenderer class. DocumentRenderer defines the overall process that is used to render a
document including firing events, error handling and page rendering. The overall process fol-
lows this outline:

1. Notify that the document has begun

2. Render each page

a. Notify that a page has begun

b. Construct a PdfRenderer object for the page

c. Generate the page

d. Notify that the page has finished

3. Notify that the document has finished

Behind the scenes, the PdfGeneratedDocument.Save() method creates a PdfRenderer object
and uses it to create the PDF. In most cases, it will not be necessary to use any other means
to save a PDF document. The PDF Generating library is robust for creating documents that
may have a thousand pages or more without having to worry about memory use. However, in
some cases client code may wish to use another mechanism to produce documents. In this
case, the client code can construct the PdfRenderer directly and use the Render method that
takes a PdfGeneratedDocument and an ICollection<BasePage>. In this way client code can
use their own collections of pages instead.

- 144 -

Programming with JoltPdf

Resources
PDF has the notion of document resources. These are objects or chunks of data that may be
shared within a page or several pages to reduce the memory needed for the document. There
are several classes of resources within PDF. Of them, the Atalasoft PDF library exposes four
types: fonts, images, templates and color spaces. In the Atalasoft PDF library, to use a
resource, you create it and assign it a name. From then on the resource is referred to by
name.

The PdfGeneratedDocument class contains a property, Resources, of type GlobalResources.
This object contains properties which represent “managers” for each type of resource. While
each resource manager shares a common base class which contains methods for adding, get-
ting, and querying resources, each manager also contains convenience factory methods spe-
cific to each resource type so that making resources is easier.

For example, it might be easier to work with a font by its font name, so The PdfFontManager
has a method that will search through installed fonts and attempt to create a font resource
based on that.

Font Resources

The Atalasoft PDF Generating library supports fonts in PDF via True Type font files. Fonts
resources can be created from a font’s name (ie, Goudy Old Style Bold), a path to a .ttf or .otf
file or a Stream containing the True Type font. Note that .otf files may contain either True
Type or Type 1 fonts, but only True Type fonts are accepted.

When creating a font resource, client code assigns the font a name (or accepts an auto-gen-
erated one). The actual name is inconsequential and is only used as a unique identifier for
the font. Client code should feel free to use any name it wishes. All references to that font
will be made through that name and not the resource object.

In version 10.4 and on, there is support for PDF standard Type 1 fonts. In the original version
of Acrobat, there were a set of "standard" fonts that did not need to be embedded within a
PDF file and were guaranteed to render accurately. These fonts will be pre-installed in any
new GlobalResources object.

The fonts are referred to by their PostScript names:

l Times-Roman

l Times-Bold

l Times-Italic

l Times-BoldItalic

l Helvetica

l Helvetica-Bold

l Helvetica-Oblique

l Helvetica-BoldOblique

l Courier

l Courier-Bold

l Courier-Oblique

l Courier-BoldOblique

- 145 -

Chapter 3

l Symbol

l ZapfDingbats

Note that Type 1 fonts do not typically have support for more than 255 simultaneously
encoded characters. The standard Roman fonts use PDF Standard Encoding, but Symbol and
Zapf Dingbats use an Identity encoding scheme where the character value corresponds to the
Adobe index of a particular glyph name for the font.

Type 1 Symbol Font Encoding

Unicode Character Character Code GlyphUnicode Character Character Code Glyph
space 32 space ! 33 !
" 34 ∀ # 35 #
$ 36 ∃ % 37 %
& 38 & ' 39 ∋

(40 () 41)
* 42 ∗ + 43 +
, 44 , - 45 −
. 46 . / 47 /
0 48 0 1 49 1
2 50 2 3 51 3
4 52 4 5 53 5
6 54 6 7 55 7
8 56 8 9 57 9
: 58 : ; 59 ;
< 60 < = 61 =
> 62 > ? 63 ?
@ 64 ≅ A 65 Α
B 66 Β C 67 Χ
D 68 ∆ E 69 Ε
F 70 Φ G 71 Γ
H 72 Η I 73 Ι
J 74 ϑ K 75 Κ
L 76 Λ M 77 Μ
N 78 Ν O 79 Ο
P 80 Π Q 81 Θ
R 82 Ρ S 83 Σ
T 84 Τ U 85 Υ
V 86 ς W 87 Ω
X 88 Ξ Y 89 Ψ
Z 90 Ζ [91 [
\ 92 ∴] 93]
^ 94 ⊥ _ 95 _
` 96 a 97 α
b 98 β c 99 χ
d 100 δ e 101 ε
f 102 φ g 103 γ
h 104 η i 105 ι
j 106 ϕ k 107 κ
l 108 λ m 109 μ

- 146 -

Programming with JoltPdf

n 110 ν o 111 ο
p 112 π q 113 θ
r 114 ρ s 115 σ
t 116 τ u 117 υ
v 118 ϖ w 119 ω
x 120 ξ y 121 ψ
z 122 ζ { 123 {
| 124 | } 125 }
~ 126 _ 127

128 Ä 129 Å
130 Ç 131 É
132 Ñ 133 Ö
134 Ü 135 á
136 à 137 â
138 ä 139 ã
140 å 141 ç
142 é 143 è
144 ê 145 ë
146 í 147 ì
148 î 149 ï
150 ñ 151 ó
152 ò 153 ô
154 ö 155 õ
156 ú 157 ù
158 û D D 159 ü
160 € ¡ 161 ϒ

¢ 162 ′ £ 163 ≤
¤ 164 ⁄ ¥ 165 ∞
¦ 166 ƒ § 167 ♣

¨ 168 ♦ © 169 ♥

ª 170 ♠ « 171 ↔

¬ 172 ← • 173 ↑

® 174 → ¯ 175 ↓

° 176 ° ± 177 ±
² 178 ″ ³ 179 ≥
´ 180 × µ 181 ∝

¶ 182 ∂ · 183 •
¸ 184 ÷ ¹ 185 ≠
º 186 ≡ » 187 ≈
¼ 188 … ½ 189 |
¾ 190 ¿ 191 ↵

À 192 Á 193
Â 194 Ã 195 ℘

Ä 196 ⊗ Å 197 ⊕

Æ 198 ∅ Ç 199 ∩

È 200 ∪ É 201 ⊃

Ê 202 ⊇ Ë 203 ⊄

Ì 204 ⊂ Í 205 ⊆

Î 206 ∈ Ï 207 ∉

Ð 208 ∠ Ñ 209 ∇

- 147 -

Chapter 3

Ò 210 ® Ó 211 ©
Ô 212 ™ Õ 213 ∏
Ö 214 √ × 215 ⋅

Ø 216 ¬ Ù 217 ∧

Ú 218 ∨ Û 219 ⇔

Ü 220 ⇐ Ý 221 ⇑

Þ 222 ⇒ ß 223 ⇓

à 224 ◊ á 225 〈

â 226 ® ã 227 ©
ä 228 ™ å 229 ∑
æ 230 ç 231
è 232 é 233
ê 234 ë 235
ì 236 í 237
î 238 ï 239
ð 240 ñ 241 〉
ò 242 ∫ ó 243 ⌠

ô 244 õ 245 ⌡

ö 246 ÷ 247
ø 248 ù 249
ú 250 û 251
ü 252 ý 253
þ 254 ÿ 255

Font Embedding

Standard Type 1 Fonts will not be embedded. True Type Fonts will be embedded within cre-
ated PDFs by default, if the font allows it. True Type fonts contain information about the con-
texts in which embedding is permissible. When a font is going to be embedded the
PdfFontManager gets asked to provide an embedding policy for that font. The policy provider
looks at the permissions for embedding and returns a PdfFontEmbeddingPolicy object con-
taining an action to take. These actions include embed, don’t embed, or throw an exception.
The default policy provider will embed where allowed and throw an exception otherwise. The
policy provider could be replaced with a provider that might instead choose to embed all fonts
except for a set of common fonts that are either likely to be on all systems or are well known
to Acrobat so that it creates a “faux font” to match it if not present.

Color Space Resources

PDF allows the use of calibrated colors within documents. This can be done through specific
calibrated color spaces or through an ICC Color profile. To handle this the PdfCo-
lorSpaceManger object holds a set of color space resources which can be embedded in PDF
documents. See the section on Color for more information.

Image Resources

In PDF images resources are stored as a resolution free stream of two dimensional samples.
The stream is typically compressed in some manner within the file. The JoltImage model for
image resource handling to allow the resource manager to accept any object type as an image
and then use a set of installed image compressors to determine how to handle that object
type. When an image resource is created, all handlers are iterated until one determines that it
can handle the object type. That handler then reports a list of possible ways that it can com-
press the object into a stream suitable for PDF. A compression method is then selected and

- 148 -

Programming with JoltPdf

subsequently applied to the object. For example, if presented with a .NET Bitmap object that
is 24 bit RGB, the default handler will report that the image can be compressed using either
DCT (JPEG), Flate, or no compression. A compression selector in the PdfImageManager then
selects the most appropriate compression to use from that list and then the image is com-
pressed to a stream suitable for PDF.

Image resource streams are kept in a “Stored Stream” object. This object is used to allow a
chunk of data to be written out to an appropriate storage device for later retrieval. The
default StoreStream type uses the systems temp folder for creating file streams that will be
used for storing data. This mechanism can be replaced with other systems if needed by chan-
ging the StreamProvider property in the PdfImageManager object. In addition to the default
TempStreamProvider, there is a MemoryStreamProvider which is equivalent, but keeps com-
pressed streams in memory. This will be fast, but will clearly place a load on memory used
and is therefore not recommended for anything but small images.

The PdfImageManager contains a collection of objects that implement the IPd-
fImageCompressor interface for compressing images. By default, this will be initialized to con-
tain an instance of the GdiImageCompressor object for handling .NET Bitmap objects.

Compressors are selected by their ability to handle a particular object type. For any given
object, a compressor is asked if it can handle the object at a particular “skill”. Skills are an
indication of the type of work needed to create the actual image data and includes:

l Perfect – the image is handled as is with no changes.

l IncreaseInformation – the image is handled, but the output image will have more
information (for example, a compressor might not handle 1-bit perfectly, but instead
converts it to 24 bit rgb color).

l DecreaseInformation – the image is handled, but the output image will have less
information (for example, a compressor might not handle 48 bit rgb, but reduces it to
24 bit rgb).

For any given image format, there may be a number of different codecs that could be used to
compress that image. When an IPdfImageCompressor has been selected, it will return a col-
lection of PdfImageCodec enums that describe how the image will be compressed. Before com-
pressing the image data, the PdfImageManager calls a CompressionSelector with the set of
available PdfImageCodecs and returns back a PdfImageCompression object which fully
describes all the parameters need to compress the image data. The default Com-
pressionSelector always chooses the first compression in the list.

When an image is compressed and cached, the PdfImageManager uses a IStoredStreamPro-
vider object to provide a way to get at the cache later. The default implementation is the Tem-
pFileStreamProvider, which creates a temporary file for the compressed stream for retrieving
later. There is also a MemoryStreamProvider that keeps compressed image data in memory.
In most cases, it will not be necessary to change the default selections, but every step is the
process is replaceable if need be.

In addition, there is an extra assembly for interacting with JoltImage that contains an
AtalaImageCompressor object for handling all AtalaImage types. See the “Integrating with
JoltImage” for more information.

Template Resources

PDF defines a way to create page content that can be reused efficiently. In the PDF spe-
cification, these are called "Form XObjects", but they are unrelated to the process of data
input and collection ("Acro Forms"). In JoltImage these are called "Templates" or "Drawing
Templates". A template resource is a reference to a DrawingTemplate object. A Draw-
ingTemplate object is very similar to a PdfGeneratedPage in that it contains a bounding

- 149 -

Chapter 3

rectangle which defines a clipping rectangle for the entire DrawingTemplate and a Draw-
ingList which contains the shapes or operations that will mark the page. DrawingTemplate
objects themselves can refer to all other resource types.

- 150 -

Programming with JoltPdf

Shapes
The Atalasoft PDF Generating library includes a hierarchy of high-level shapes. Each shape is
meant to fully encapsulate the shape’s parameters and be able to draw itself. There are shape
objects that represent paths, circles, arcs, rounded rectangles, images, and text. Each of these
objects descends from a single class, PdfBaseShape. PdfBaseShape contains the definitions
for the shape’s color (fill and stroke), the line style used for stroking, and the location, scale
and rotation of the object. Shapes that descend from PdfBaseShape typically only have to con-
cern themselves with how they are drawn (how they are filled or stroked) and not with how
they are placed on the page (location, scale, rotation). There is no requirement to use any of
the PdfBaseShape-derived classes. Each shape is implements at least the IPdfRenderable inter-
face and optionally the IPdfRenderableContainer and IPdfResourceConsumer interfaces. All
shapes must be serializable.

PdfPath

The Atalasoft PDF Generating library includes a hierarchy of high-level shapes. Each shape is
meant to fully encapsulate the shape’s parameters and be able to draw itself. There are shape
objects that represent paths, circles, arcs, rounded rectangles, images, and text. Each of these
objects descends from a single class, PdfBaseShape. PdfBaseShape contains the definitions
for the shape’s color (fill and stroke), the line style used for stroking, and the location, scale
and rotation of the object. Shapes that descend from PdfBaseShape typically only have to con-
cern themselves with how they are drawn (how they are filled or stroked) and not with how
they are placed on the page (location, scale, rotation).

PdfPath

Path shapes are one of the fundamental components of PDF rendering. A path is a list of
operations that are performed in sequence to draw the path. There are four operations that
can be performed: move, line, curve and close. For example, you could create a square path
with the following code:

Java Copy Code
private PdfPath Square(double wide, PdfColor outlineColor, double
lineWidth)
{

PdfPath path = new PdfPath(outlineColor, lineWidth);
path.moveTo(0, 0);
path.lineTo(wide, 0);
path.lineTo(wide, wide);
path.lineTo(0, wide);
path.close();
return path;

}

The path starts with a move operation and traces the outline of the square. Notice that the
square ends with a close operation and not another line. This is because PDF recognizes
closed paths and treats them differently. When path is closed, the PDF viewer will auto-
matically connects a straight line from the last point to the first point and creates a joint to
make a clean corner. If you connect the line directly yourself, the PDF viewer doesn’t know
that it should create a clean corner. The results may not be what you expect.

- 151 -

Chapter 3

Left, a square drawn with a close operation; right a square without a close operation.

All the path operations return the PdfPath object itself so you can use a "fluent" style if
you choose. The previous path construction could have been written as "return
path.MoveTo(0, 0).LineTo(wide, 0).LineTo(wide, wide).LineTo(0, wide).Close();"

Curves in PDF are represented by cubic Bézier functions. A Bézier is represented by four
points, a start point and an end point (P0 and P3) and two control points (P1 and P2) and is
represented by the following formula:

where t represents time and ranges from 0.0 to 1.0. B(t) represents a point on the curve at
time t.

Bézier curves have a number of desirable properties including: a small amount of information
(4 points) can represent a wide variety of curves, they can be rendered efficiently, the entire
curve will always be contained within a rectangle bounded by the minima and maxima of the
four points and the segments P0P1 and P2P3 are tangent to curve at the start and end points
respectively.

Example Bézier curves

In the PdfPath shape, you can add a curve using the CurveTo method. This method takes
three points which represent the two control points and the end point of the curve. The start
point of the Bézier will be the last point in the path from any of MoveTo, LineTo or CurveTo
methods.

- 152 -

Programming with JoltPdf

Paths can be filled, stroked or clipped. When a line is stroked, there are a variety options that
can be selected for the style of the line, including thickness, joint style, end caps and dashes.
These are all available in the LineStyle property of PdfBaseShape.

The thickness of a line is in PDF units and defaults to 1.0. When set to 0, the PDF viewer is
instructed to render the line in the thinnest possible way. Since this is device-dependent, the
final output will not be consistent from device to device and this should be avoided (consider
the difference between the thinnest possible line on a 96 dpi monitor versus a 2400 dpi
phototypesetter). If a client application wants to create a hairline, it should pick an appro-
priate thickness instead of 0.

The joint style for a path is how consecutive segments are merged together. There are three
possible styles, square, rounded and beveled.

Line joins: square, rounded, beveled.

Paths may be stroked in an arbitrary dash pattern. The pattern is a phase number and a col-
lection of alternating dash lengths and gap lengths. The dash and gap lengths are distances
along the path in PDF units. The phase is how far into the pattern to start a line. The entire
collection of dash and gaps is used until it is exhausted, then it is repeated until the complete
path has been stroked.

Example dash patterns, from top to bottom: [1], [1 2], [0.5], [0.5, 1, 2, 1]

In the example dash patterns, a single entry implies alternating dash and gaps of the same
length. In the bottom example, you can see how complex dashes patterns can be made. Each
pattern above has a phase of 0, meaning that the PDF viewer starts the pattern at the
beginning. If the phase were 0.5, the first example would have started with a half dash then
continued normally.

Paths may be stroked with three different types of ends: butt, round or projecting square.

Line cap examples: butt, round and projecting square.

The final line style is the miter limit. This is a parameter that is used to handle cases when a
path with a highly acute angle will project in a reasonable way. In this picture the path is

- 153 -

Chapter 3

shown with an acute angle and the full miter is project from the line in blue. The miter limit
prevents the miter from extending out this distance.

The miter limit is a point at which the mitering will be turned off. It is defined by the ratio of
the miter length and the line thickness. When this ratio exceeds the miter limit, mitering will
not be done on the line. Since the miter length is related to the angle between the two lines,
there is also a relationship between miter limit and line join angle:

Where theta is the angle between the two lines.

A miter limit of 2.0 will cut off miters at angles less than 60 degrees. The default miter limit
is 10.

In addition to stroking, paths may be filled with a color. A path may be filled using one of
two techniques, either the non-zero winding rule or the even-odd rule. In the non-zero wind-
ing rule, horizontal rays are shot through the path. Whenever a path segment crosses the ray
going up, one is added to a “winding number”. Whenever a path segment crosses the ray
going down, one is subtracted from the winding number. Whenever the winding number is
non-zero, areas along the ray will be filled. In the even odd rule, rays are shot through the
path. Whenever the ray has crossed an odd number of path segments, areas along the ray
will be filled. The choice of the rule will produce different filled areas in compound paths or
paths that self-intersect.

The same shaped with the non-zero winding rule (left) and the even-odd rule (right)

PdfRectangle

PdfRectangle is a shape that represents a rectangle. In addition to the properties of
PdfBaseShape, it includes a property, Bounds, which represents the area of the rectangle. The
fill method doesn’t affect how a rectangle is filled.

PdfRoundedRectangle

PdfRounded rectangle is a shape that represents a rectangle with rounded corners. In addi-
tion to the normal PdfBaseShape properties, PdfRoundedRectangle includes a property,

- 154 -

Programming with JoltPdf

Bounds, which represents the area of the rectangle and a property CurveRadius that rep-
resents the radius of each corner.

PdfCircle

PdfCircle is a representation of a circle from a center and radius. The circle itself is drawn in
PDF using a Bézier path approximation of the circle. By changing the Scale property to a
non-uniform scale you can get an ellipse.

PdfArc

PdfArc represents a circular arc. It consists of a the center and radius of a circle as well as the
start angle and end angle of the arc in degrees. If the property Clockwise is set to true, the arc
will be drawn from the start angle to the end angle in a clockwise direction, otherwise the arc
will be drawn counterclockwise. If the property IncludeWedge is set to true, the center will be
added to the path drawn.

Two PdfArc shapes stroked and filled with IncludeWedge set to false (left) and IncludeWedge
set to true (right).

PdfImageShape

PdfImageShape represents an image placed in a rectangular area on the page. It includes a
Bounds property representing the area that will be covered with the image and ImageName,
the name of an image resource to use to fill the shape. The FillColor, OutlineColor and Clip
properties of PdfBaseShape are ignored.

Creating an Image Shape From a Bitmap
Java Copy Code

PdfImageShape ConvertBitmapToShape(PdfGeneratedDocument doc, Bitmap
bmp)
{

String imageName = doc.getResources().getImages().addImage(bmp);
PdfImageShape shape = new PdfImageShape(imageName, new PdfBounds(0,

0, bmp.getWidth(), bmp.getHeight()));
bmp.dispose(); // if you don't need the Bitmap, dispose it
return shape;

}

If you have also purchased the DotImage DocumentImaging toolkit, then you will have access
to the classes AtalaImageCompressor and AtalaJpegStreamCompressor in the assembly
Atalasoft.dotImage.PdfDoc.Bridge. The AtalaImageCompressor can be added to Images
resource manager in a PdfGeneratedDocument's Resources and will handle compressing any
object of type AtalaImage. Similarly the AtalaJpegStreamCompressor can be added to the
Images resource manager and will handle streams that represent JPEG images. Any stream
passed in will, if it is a JPEG image, be copied to the current StoredStreamProvider (default is
a temporary file) without recompressing the JPEG data.

- 155 -

Chapter 3

Installing the AtalaJpegStreamCompressor

In ad

Java Copy Code
doc.getResources().getImages().getCompressors().insert(0, new
AtalaJpegStreamCompressor());

dition to the above method to install a new compressor, the AtalaImageCompressor object
contains a utility factory method which will construct a new PdfGeneratedDocument with
both the AtalaImageCompressor and the AtalaJpegStreamCompressor pre-installed.

Creating a Document using the Factory method
Java Copy Code

PdfGeneratedDocument doc = AtalaImageCompressor.createDocument();

The CreateDocument() method also has a flavor that accepts instances of the
Jpeg2000Encoder and JBig2Encoder objects (or null for none). If you have a license for
these objects, you can pass them in and they will automatically be used for color images
and 1-bit images respectively.

When the AtalaImageCompressor is installed in a PdfGeneratedDocument, you can pass an
AtalaImage directly into the resource manager.

In addition to the AtalaImageCompressor, the bridge assembly also contains a class,
AtalaImageCoordinateConverter, which can be used to convert coodinates back and forth
between image coordinates and image resolution to PDF coordinates and PDF units.

Installing the AtalaJpegStreamCompressor
Java Copy Code

doc.getResources().getImages().getCompressors().insert(0, new
AtalaJpegStreamCompressor());

It is important to remember that images can consume very large amounts of memory. Keep-
ing images in memory will not scale well beyond a few dozen images. If you're working with
hundreds of pages with hundreds of images, you should adopt an approach where you create
image resources as early as possible and dispose the original images soon thereafter.

Converting a Directory of Images to a PDF

PDF Text Shapes

There are six main text shapes available, PdfTextLine, PdfClippedTextLine, PdfTextPath,
PdfTextBox, PdfStyledTextBox and DynamicPdfTextBox. Each of the set have different uses
and constraints.

PdfTextLine is the simplest of the set. It represents a horizontal line with text on top of it.
Text is drawn along the line as people tend to hand write – the bottoms of most letters will be
tangent to the line, except for letters with descenders (such as g, p, q, y etc.) which will
appear with the descender below the line.

- 156 -

Programming with JoltPdf

PdfClippedTextLine represents a line of text that will be clipped inside a bounding box on the
page. It uses a PdfTextLine shape internally to draw the text.

PdfTextPath is similar to PdfTextLine except that instead of a horizontal line, text will follow
any arbitrary set of path operations, including Bézier curves.

PdfTextBox is a shape that draws formatted text on a page. The text will be formatted to fit
the bounds using the text properties.

PdfStyledTextBox is similar to PdfTextBox except that it accepts a StyleTextInput object
which can be used to add new styled text to the box. Typically this will be used for font
changes or color changes.

DynamicPdfTextBox is similar to PdfTextBox except that instead of the text being limited to a
fixed box, the DynamicPdfTextBox lets you set a fixed width and it will grow the box up to a
maximum.

Each text shape that inherits from PdfBaseTextShape will include the RenderMode property.
This is a flags enumeration that allows you to pick one of 8 possible modes of rendering the
text which are a combination of filling, stroking, and clipping.

Demonstration of the RenderMode Property

- 157 -

Chapter 3

PdfTable

PdfTable is a conceptual model of a table of text. The table is broken down into a collection of
columns. Rows are added to the table to fill out the columns with data. Once the data has
been added to the table, call the Fill() method to finalize the content.

Columns are defined by a few properties:

l A key or name for referring to the column

l Text to display as the column header

l The width of the column in PDF units

l The alignment of text in the column

l Left and right padding of the column

Rows can be represented by a Dictionary<string, string> where each key corresponds to a key
in the columns. The value associated with that key in the dictionary will be displayed in the
row under the column. In addition, rows can be represented by an enumeration of objects that
have properties that correspond to the column names.

Creating a Simple Table

Output from sample code.

PdfTemplateShape

The PdfTemplateShape is a very simple shape that is used to place a DrawingTemplate (rep-
resented by a Template resource name) on a page. In order to work with a PdfTemplateShape,
you need to first create a DrawingTemplate object and add it to your document's Template
resources. Then construct a PdfTemplateShape using the resource's name and a desired
Bounds on the page. The PdfTemplateShape will be drawn using the all the transformation
information in PdfBaseShape (Location, Scale, and Rotation).

It is easier to make a template shape with coordinates that is based around the origin and
Bounds that match the DrawingTemplate's bounds, then use the Location to place it
where you want.

Making a Simple Template
Java Copy Code

- 158 -

Programming with JoltPdf

public void SimpleTemplate()
{

PdfGeneratedDocument doc = new PdfGeneratedDocument();
doc.setEmbedGeneratedContent(false);

PdfGeneratedPage page = doc.addPage(PdfDefaultPages.letter());

DrawingTemplate template = new DrawingTemplate(new PdfBounds(0, 0,
200, 200));

template.getDrawingList().add(new PdfRoundedRectangle
(template.getBounds(), 12,

PdfColorFactory.fromRgb(.8, .8, 0)));
template.getDrawingList().add(new PdfCircle(new PdfPoint

(template.getBounds().getWidth() / 2, template.getBounds().getHeight()
/ 2),

template.getBounds().getHeight() / 4, PdfColorFactory.fromRgb(0, 0,
0), 2, PdfColorFactory.fromRgb(.8, .2, .1)));

String resourceName = doc.getResources().getTemplates().add
(template);

page.getDrawingList().add(new PdfTemplateShape(resourceName, new
PdfBounds(144, 400, template.getBounds().getWidth(),
template.getBounds().getHeight())));

doc.save("simpletemplate.pdf");
}

Note that the DrawingTemplate object has a DrawingList in it that is identical to a PdfGen-
eratedPage object. As such, you can put any PDF shape (and any IPdfRenderable) object into
the your DrawingTemplate. The output of this example is shown below:

- 159 -

Chapter 3

When the DrawingList in a DrawingTemplate is rendered it will be clipped to the Draw-
ingTemplate.Bounds property. Since lines in PDF are centered in width over the math-
ematical line that defines them, adding a PdfRectangle with a drawn outline that is
coincident with the DrawingTemplate.Bounds will result in half of the rectangle's outline
being clipped (since it extends beyond the DrawingTemplate.Bounds.

Although DrawingTemplates offer a great deal of flexibility, there are a few artifacts that may
be undesirable. All graphic elements will be scaled to the PdfTemplateShape's bounds (and it's
Scale). You might wish to make a background box to represent an underlay of a highlighted
area and define a single unit-sized DrawingTemplate to represent it it. This will work as expec-
ted if the template only uses filled shapes, but if you add any lines, the line width will also be
scaled, possibly non-uniformly, producing unpleasant results. In fact, anything with a typ-
ically fixed aspect ration (images, text, circles) will get scaled and may look off.

The original intent for DrawingTemplates in PDF was to create letterhead or logos that could
be shared from page to page without appreciably increasing the document size.

By modifying the previous sample slightly, we can see how multiple PdfTemplateShapes can
be used on a page without altering the original shape.

Using Multiple Copies of the Sample DrawingTemplate
Java Copy Code

- 160 -

Programming with JoltPdf

public void SimpleTemplate3()
{

PdfGeneratedDocument doc = new PdfGeneratedDocument();
doc.setEmbedGeneratedContent(false);

PdfGeneratedPage page = doc.addPage(PdfDefaultPages.letter());

DrawingTemplate template = new DrawingTemplate(new PdfBounds(0, 0,
204, 204));

template.getDrawingList().add(new PdfRoundedRectangle(new PdfBounds
(2, 2, template.getBounds().getWidth() - 4, template.getBounds
().getHeight() - 4),

12, PdfColorFactory.fromRgb(.8, .8, 0), PdfColorFactory.fromRgb(0,
0, 0), 4));

template.getDrawingList().add(new PdfCircle(new PdfPoint
(template.getBounds().getWidth() / 2, template.getBounds().getHeight()
/ 2),

template.getBounds().getHeight() / 4, PdfColorFactory.fromRgb(0, 0,
0), 2, PdfColorFactory.fromRgb(.8, .2, .1)));

String resourceName = doc.getResources().getTemplates().add
(template);

PdfTemplateShape shape = page.getDrawingList().add<PdfTemplateShape>
(new PdfTemplateShape(resourceName, new PdfBounds(0, 0,
template.getBounds().getWidth() / 4, template.getBounds().getHeight()
/ 4)));

shape.setLocation(new PdfPoint(144, 400));

for (int i = 1; i <= 30; i++)
{

shape = page.getDrawingList().add<PdfTemplateShape>(new
PdfTemplateShape(shape));

shape.setRotation(i * 3);
}

doc.Save("simpletemplate3.pdf");
}

- 161 -

Chapter 3

PostnetBarcodeShape

The PostnetBarcodeShape is an example shape that renders a zip code using a Postnet Bar-
code. A Posnet barcode accepts a text string with either 5, 9, or 11 digits. The barcode is
placed starting at the Location property and moving to the right. Full height bars will be
0.125 inches high and short bars will be 0.05 inches high.

GSave / GRestore

The GSave and GRestore objects are not strictly shapes - they are IPdfRenderable objects that
perform graphics state save and restore operations in a DrawingList object.

In PDF (and historically in PostScript), many graphics operations make changes to the cur-
rent graphic state that aren't changeable. For example, if the clipping area in a PDF page can
only be made smaller by clipping operations, not larger. To work around this issue, there are
operations in PDF to save and restore the current graphics state. Graphics state includes:

l Stroke Color

l Fill Color

l Transformation matrix

l Font name

l Font size

l Text rendering mode

- 162 -

Programming with JoltPdf

l Font leading

l Word spacing

l Character horizontal scaling

l Line style (width, dash pattern, line caps, line join, miter limit)

l Clipping

l Current path

Normally, client code will not need these operations as PdfBaseShape is careful to save and
restore the current transformation matrix and shapes that clip automatically generate GSave
and GRestore operations.

There are cases, where it does make sense. For example, if you need to watermark or otherwise
add content on top of existing content an existing PDF document created by software that is
not so careful, it will be vital to ensure that the graphics state is predictable. This can be done
either by inserting a GSave object in the beginning of the DrawingList and a GRestore object
at the end of the list.

Ensuring Clean Graphics State in Existing Content

Java Copy Code
PdfGeneratedDocument doc = new PdfGeneratedDocument(sourceStream, true);

PdfGeneratedPage page = (PdfGeneratedPage)doc.getPages().get(0);

if (page == null) throw new Exception("unable to import page 0");

page.getDrawingList().insert(0, new GSave());

page.getDrawingList().add(new GRestore());

// add more content here

doc.save("output.pdf");

);

Transform

The Transform object is not a shape. It is an object that implements IPdfRenderable. Trans-
form encapsulates a PdfTransform object that will be applied to the PDF content that follows
it. Note that transformations are cumulative not commutative. A scale transform applied after
a translate transform is rarely the same as a translate transform followed by a scale trans-
form.

Marked Content

PDF allows content on a page to contain special markups that define special areas of interest
with a name. The meaning of these names are highly specific to the task they represent. For
example, the tag "Tx" is used to mark where text operations should fall for rendering an
annotation with variable text; the tag "ReversedChars" is usually used for text in a right-to-
left reading system that is being rendered by a font that follows left-to-right advancing.

The PdfMarkedContent object encapsulates the PDF marked content markups. It is not a
shape itself, but instead contains a DrawingList that will contain content that will be sur-
rounded by marked content markups.

- 163 -

Chapter 3

Making Custom Shapes

To make custom shapes, the easiest approach is to subclass the PdfBaseShape object. Con-
sider the task of making a shape that represents a regular polygon. To make a regular poly-
gon, you need a center, a radius and the number of sides. One way to generate the points is
to use get one starting point and rotate it around the center by the angle subtended each side.
In creating a new descendant of PdfBaseShape, you need to write a constructor, a clone
method and a means to draw the shape:

Creating a Custom Shape
Java Copy Code

- 164 -

Programming with JoltPdf

public class RegularPolygon extends PdfBaseShape

{

public RegularPolygon(PdfPoint center, double radius, int sides)

{

super(PdfColorFactory.fromGray(0.0),5.0)

if (sides < 3) throw new IllegalArgumentException("Polygons must have at least 3 sides");

GeneratePoints(center, radius, sides);

_center = center;

_radius = radius;

_sides = sides;

}

private PdfPoint _center;

private double _radius;

private int _sides;

public PdfPoint getCenter() { return _center; }

public double getRadius() { return _radius; }

public int getSides() { return _sides; }

private void GeneratePoints(PdfPoint center, double radius, int sides)

{

Points = new List<PdfPoint>();

PdfPoint currPoint = new PdfPoint(0, radius);

_points.add(currPoint + center);

PdfTransform transform = PdfTransform.rotate(2 * Math.PI/(double)sides);

for (int i = 1; i < sides; i++)

{

currPoint = transform.transform(currPoint);

_points.add(currPoint + center);

}

}

private List<PdfPoint> _points = new ArrayList<PdfPoint>();

public List<PdfPoint> getPoints() { return _points; }

- 165 -

Chapter 3

protected override PdfBaseShape CloneInstance()

{

return new RegularPolygon(Center, Radius, Sides);

}

}

protected override void DrawShape(PdfRenderer w)
{

PdfPath path = new PdfPath(this);

for (int i = 0; i < Points.Count - 1; i++)
{

PdfPoint p = Points[i];
if (i == 0) { path.MoveTo(p); }
else { path.LineTo(p); }

}
path.Close();
path.GeneratePdf(w);

}
}

In this example, a private list of points is used to hold the points at the corners of the
polygon. GeneratePoints() creates a start point at (0, radius) and adds successive rotations of
the point to the list. DrawShape is an abstract method defined in PdfBaseShape. Overriding
this method lets us draw the polygon as we see fit – in this case we use a PdfPath object to
draw the shape for us.

Suppose that you want to create a check box shape. A check box could have a property for its
size as well as a property for whether or not it is checked. We could implement this very
simply with a PdfBaseShape.

Creating a CheckBox with PdfBaseShape
Java Copy Code

- 166 -

Programming with JoltPdf

public class PdfCheckBoxShape extends PdfBaseShape

{

public PdfCheckBoxShape(double size, bool isChecked, IPdfColor outlineColor, double
lineWidth)

{

super(outlineColor, lineWidth);

Size = size;

IsChecked = isChecked;

}

private double _size;

private boolean _isChecked;

public double getSize() { return _size; }

public boolean getIsChecked() { return _isChecked;}

protected override PdfBaseShape CloneInstance()

{

return new PdfCheckBoxShape(Size, IsChecked, OutlineColor, Style.Width);

}

protected override void DrawShape(PdfPageRenderer w)

{

PdfRectangle rect = new PdfRectangle(new PdfBounds(0, 0, getSize(), getSize()), getOut-
lineColor(), Style.getWidth(), getFillColor());

rect.render(w);

if (IsChecked)

{

PdfPath path = new PdfPath(OutlineColor, Style.Width);

path.moveTo(new PdfPoint(0, 0));

path.lineTo(new PdfPoint(Size, Size));

path.moveTo(new PdfPoint(0, Size));

path.lineTo(new PdfPoint(Size, 0));

path.render(w);

}

- 167 -

Chapter 3

}

}

When adding these shapes to a PDF, we get something that looks like this:

Or like this when a fill color has been set:

This may be satisfactory for your needs, but what if you didn’t want to have a fill color at all
and maybe you feel that PdfBaseShape does too much work for you? In either case, you could
define your own class from the ground up. All you would need to do is create a class that
implements the interface IPdfGeneratable.

Creating a CheckBox with IPdfRenderable

In

Java Copy Code

- 168 -

Programming with JoltPdf

public class PdfSimplestCheckBoxShape extends PdfRenderable

{

public PdfSimplestCheckBoxShape(double size, boolean isChecked, PdfPoint location, double
lineWidth)

{

_size = size;

_isChecked = isChecked;

_location = location;

_lineWidth = lineWidth;

}

private double _size;

private boolean _isChecked;

private PdfPoint _location;

private double _lineWidth;

public double getSize() { return _size;}

public void setSize(double value){ _size = value;}

public boolean getIsChecked() { return _isChecked; }

public void setIsChecked(boolean value) { _isChecked = value; }

public PdfPoint getLocation() { return _location; }

public void setLocation(PdfPoint value){ _location = value;}

public double getLineWidth() { return _lineWidth; }

public void setLineWidth(double value) { _lineWidth = value; }

private String _name;

public String getName() { return _name; }

public void setName(String value) { _name = value; }

public void render(PdfPageRenderer w)

{

w.getDrawingSurface().begin();

w.getDrawingSurface().addRect(new PdfBounds(_location.X, _location.Y, _size, _size));

- 169 -

Chapter 3

if (_isChecked)

{

List<PdfPathOperation> path = new ArrayList<PdfPathOperation>();

path.add(PdfPathOperation.moveTo(Location));

path.add(PdfPathOperation.lineTo(Location.getX() + _size, _location.getY() + _size));

path.add(PdfPathOperation.moveTo(Location.getX(), _location.getY() + _size));

path.add(PdfPathOperation.lineTo(Location.getX() + _size, _location.getY()));

w.getDrawingSurface().addPath(path);

}

PdfLineStyle style = PdfLineStyle.default();

style.setWidth(_lineWidth);

w.getDrawingSurface().stroke(style, PdfColorFactory.fromGray(0));

w.getDrawingSurface().end();

}

}

this case, the infrastructure of PdfBaseShape is gone, so we have to implement the method
GeneratePdf. This method is give an object called PdfRenderer which is responsible for cre-
ating content that will go into the pages content. This object itself is an abstraction of the
PDF rendering model and provides a number of operations that make is easy to create correct
PDF content. Within the PdfRenderer object, there is a property called DrawingSurface. The
DrawingSurface is a virtual canvas for performing drawing operations, including paths, rect-
angles, templates, and images. To draw shapes, you add path elements (paths or rectangles)
then either stroke or fill them. Before performing any drawing operations, you must call the
Begin() method and after you are done, you must call the End() method. Begin() and End()
calls may be nested to any depth.

Whether you are subclassing PdfBaseShape or implementing IPdfRenderable, you should
make your object serializable. When document content is embedded within a PDF doc-
ument, the elements of drawing lists will be serialized into the final PDF. If any element is
not serializable, this will cause a failure during a Save when the PdfGeneratedDocument
property EmbedGeneratedContent is true.

If you are implementing a shape that uses document resources (fonts, colorspaces, tem-
plates, images, etc.) or contains an object that implements IPdfResourceConsumer, you
must implement the interface IPdfResourceConsumer. This interface allows an object to
report the resources it uses as well as rename them if needed. In implementing
ResourcesUsed and NotifyResourceRenamed, if you refer to Template resources or any
other object that implements IPdfResourceConsumer, you must also find and return the
resources consumed by them.

- 170 -

Programming with JoltPdf

If you are implementing a shape that contains text, consider implementing the interface
IPdfTextContainer which will allow a standard way of setting and getting text from a
shape.

If you are implementing a shape that may contain sub-shapes, consider making a prop-
erty of type PdfDrawingList and implementing IEnumerable<IPdfRenderable> and return-
ing the PdfDrawingList's GetEnumerator(). This will ensure that child enumeration
happens in a predictable manner.

- 171 -

Chapter 3

Round Trip Documents
PDF documents can be created with a number of different tools and the process or toolset
used in their creation determines the actual PDF data content, which in turn may bear little
or no resemblance to the original data structures. As such, PDF is often considered to be a
write-only or final format. The Atalasoft PDF Generating toolkit provides some means around
this limitation. If you create a PDF from a PdfGeneratedDocument object and set the
EmbedGeneratedContent property to true, then after the PDF content has been rendered, the
DrawingList object in the PdfGeneratedPage will be serialized and embedded in the PDF so
that it can be retrieved later and rebuilt.

In other words, you can get full round-trip editing of PDFs by embedding your Generated con-
tent within the PDF itself. This also means that shape objects like PdfCircle which generate
Bezier curves in the final PDF will come back as PdfCircle objects and not as a PdfPath object.

Embedding the Generated content adds a moderate amount of overhead to the final PDF, but
resource objects do not count in this overhead as these resources will get rebuilt from the PDF
content itself.

The Atalasoft PDF Generating toolkit alsoincludes the ability to import pages from the
Atalasoft PdfDocument object. For example, you can dynamically insert a cover page into an
existing document or easily pull in a page, say a legal disclaimer, from an existing PDF.
PdfPage objects from the Pages property of PdfDocument also inherit from the BasePage
object and can therefore go into the Pages collection of a PdfGeneratedDocument.

PdfPage objects from PdfDocument objects are very light-weight in comparison to PdfGen-
eratedPage objects as they only reference the original page instead of containing a rep-
resentation of data within the page (size, rotation, annotations, scripts, etc.).

- 172 -

Programming with JoltPdf

Integrating with JoltImage
In addition to the main assembly, there is an additional assembly, Atalasoft.PdfDoc.Bridge.
This assembly provides a bridge between JoltImage classes and the PDF Generating classes.
The main class is the AtalaImageCompressor. To use this class, make an instance of it and
add it to the Compressors collection:

PdfForms can also be used with our Web Document Viewer.

Installing the AtalaImageCompressor

Java Copy Code
PdfGeneratedDocument doc = new PdfGeneratedDocument();
doc.getResources().getImages().getCompressors().insert(0, new
AtalaImageCompressor());

PdfGeneratedDocument doc = newPdfGeneratedDocument();

doc.Resources.Images.Compressors.Insert(0, newAtalaImageCompressor());

this will provide tools that will allow the PdfImageManager method FromImage to accept
AtalaImage objects. All pixel formats are accepted by the AtalaImageCompressor. In addi-
tion, if the AtalaImageCompressor object is constructed with instances of the Atalasoft Jp2En-
coder and Jb2Encoder objects, then images can be compressed using JPX and JBIG2
encoding.

There is also another image compressor, the AtalaJpegStreamCompressor. This compressor
accepts a .NET stream object and if the stream contains a JPEG image, it will create an image
resource with the already compressed stream and will not degrade the image by decoding and
re-encoding it.

To make this process easier, AtalaImageCompressor has a static factory method called
CreateDocument which will create a new, empty PdfGeneratedDocument object with the
AtalaImageCompressor and AtalaJpegStreamCompressor preinstalled:

Creating a Document with Pre-Installed Compressors

Java Copy Code
PdfGeneratedDocument doc = AtalaImageCompressor.createDocument();
PdfGeneratedDocument doc1 = AtalaImageCompressor.createDocument(new
Jp2Encoder(), null);

String imName = doc.getResources().getImages().addImage(atalaImage);
String imName1 = doc1.getResources().getImages().addImage(atalaImage);

In this example, doc1 is created with the Atalasoft Jp2Encoder which will provide JPX com-
pression, if it is available.

Since AtalaImage objects may contain calibrated color profiles through the ColorProfile prop-
erty, it is advantageous to pass this on to the generated PDF. This can be done manually, by
creating a PdfColorSpace resource through the PdfColorSpaceManager, but it can be done auto-
matically via the static method AddImageResource in the AtalaImageCompressor:

Automatic Use of ICC Color Profiles

Java Copy Code

- 173 -

Chapter 3

AtalaImage image = new AtalaImage(200, 200,
PixelFormat.getPixel24bppBgr());
image.setColorProfile(ColorProfile.fromSrgb());
String[] names = AtalaImageCompressor.addImageResource
(doc.getResources(), image);

In this AddImageResource will first see if the image has a non-null ColorProfile and if so it
will create a PdfColorSpaceResource for that ColorProfile and will then make a PdfImageRe-
source for the AtalaImage using the created PdfColorSpaceResource. The method returns and
array of two strings. The first string is the name of the image resource and the second will be
the name of the color space resource or null if there was no color profile.

When working with PdfImageShape objects, it is necessary to size the resulting object to PDF
dimensions. This can be done automatically by using the static methods ImageSize and
ImageSizeAt in AtalaImageCompressor. Given an AtalaImage object, these methods return a
PdfBounds object that is sized in PDF units to match the image’s real-world dimensions as
specified by the Width, Height, and Resolution property of the image. If the units are not spe-
cified in the resolution, they will be treated as if they were pixels per inch.

Finally, there are a pair of utility methods in AtalaImageCompressor to make
PdfImageShapes as automatically as possible. They are called CreateImageShape() and
CreateImageShapeAt(). Both are passed the PdfGeneratedDocument Resources property and
the source AtalaImage and return a new PdfImageShape object representing that image.
CreateImageShapeAt() also takes an x and y in PDF coordinates specifying location of the
lower left corner of the image. Note that once a PdfImageResource or PdfImageShape object
has been created from an AtalaImage, the source image is no longer necessary and may be dis-
posed freely. The PdfImageShape object and the PdfImageResource are themselves very light-
weight when compared with the original AtalaImage as the actual image data will have been
written out to a temporary stream on resource creation and is kept out of memory entirely –
even at the point of calling PdfAuthoredDocument.Save(), the data is streamed across from
the temporary stream to the final PDF and never stays in memory beyond buffering.

- 174 -

Programming with JoltPdf

Actions
PDF Defines a set of actions that can be performed in response to user interaction on a page
or in response to other events that happen at a page or document level. In general, anything
that cause or respond to an event usually has a suite of actions associated with it. For
example, any PDF document may contain a list of bookmarks and instead of having each
bookmark be simply associated with a location within the document, they are instead an
action list of actions to take, one of which is likely to be a "go to view" action.

Actions may be put in a number of places within a PdfGeneratedDocument including:

l PdfGeneratedDocument.AdditionalActions - a set of actions that are triggered by doc-
ument-level events.

l PdfGeneratedDocument.GlobalJavaScriptActions - a set of JavaScript-only actions that
are performed when a document has been opened. This is intended to be used to define
global functions to be shared across all JavaScript actions in the entire document.

l PdfGeneratedPage.AdditionalActions - a set of actions that are triggered by page-level
events.

l BaseAnnotation.AdditionalActions - a set of actions that are triggered by annotation
events. Even though the PDF spec allows for these to exist in all annotation types, they
appear to only be honored by Adobe Acrobat with BaseWidgetAnnotation objects.

l BaseAnnotation.ClickActions - a set of actions that are triggered when an annotation
has been clicked.

PdfAction

PdfAction is an abstract base class from which all actions inherit. It has a single property in
it, ActionType, which is an enumeration that indicates the type of the action. These are the
possible values of ActionType:

l GoToView - Go to a specific page and location in the document

l GoToRemote - Go to a page and location in a remote document

l GoToEmbedded - Go to a page and location in an embedded file

l LaunchApplication - Launch an application

l ReadThread - Start reading at a threaded point

l FollowURI - Resolve a uniform resource identifier

l PlaySound - Play a sound

l PlayMovie - Play a movie

l Hide - Set an annotation's Hidden flag

l PerformNamedAction - Perform a set of actions associated with a name

l SubmitForm - Submit form data to a URI

l ResetForm - Reset form data to defaults

l ImportData - Import form data from a file

l JavaScript - Execute a JavaScript script

l SetOCGState - Set the state of optional content groups

- 175 -

Chapter 3

l Rendition - Control how multimedia is played

l PerformTransition - Perform a transition

l GoTo3DView - For to a view in a #D model.

Not all types are presently supported. Those that are not supported will have the correct
ActionType, but will be represented as a PdfUnknownAction.

Go To View Actions

The most common type of PdfAction is a PdfGoToView actions. A PdfGoToView action is very
simple - it contains a Destination property that defines the location to where the viewer
should navigate when the action is executed. The destination is an object of type Destination
which contains information about which page will be visited and how to zoom on that page.
While it is straight-forward to make a PdfDestionation object and construct a PdfGoToView
action which contains it, there are factory methods within PdfDestination that make both
PdfDestination objects or a PdfGoToViewAction containing the appropriate PdfDestination
object.

Making a PdfGoToViewAction that will Fit To a Page
Java Copy Code

PdfAction action = PdfDestination.fitPageAction(targetPageIndex);

This will go to the 0-based page specified by targetPageIndex and display the page so that the
entire page fits within the viewer window.

If you reorder pages within a document, it will be necessary to modify actions within the
document that point to that page.

PdfDestination has factory methods for making the following PdfGoToViewActions:

l PointZoomAction

l FitPageAction

l FitWidthAction

l FitHeightAction

l FitRectangleAction

l FitBoundsAction

l FitBoundsWidthAction

URI Actions

The PdfURIAction object represents a URI with an optional Base URI that represents a target
for a link. When activated, a typical viewer will request permission from the user to follow the
URI specified. There is also an optional parameter to allow the area (if any) represented by a
link to act as a mapped link. The coordinates of the click relative to the link area will be
appended to the URI in the form ?<x-coordinate>,<y-coordinate>.

Making a Bookmark with a URI Action
Java Copy Code

- 176 -

Programming with JoltPdf

PdfGeneratedDocument doc = new PdfGeneratedDocument();
PdfGeneratedPage page = doc.addPage(PdfDefaultPages.letter());
doc.setBookmarkTree(new PdfBookmarkTree());
doc.getBookmarkTree().getBookmarks().add(new PdfBookmark("Atalasoft",
Color.Blue, FontStyle.Regular,

new PdfURIAction(new Uri("http://www.atalasoft.com")), true));
doc.Save("uriaction.pdf");

JavaScript Actions

PDF has the ability to define actions that execute JavaScript code when activated. The spe-
cifics for what can be done with JavaScript actions is extensive. Please refer to the Adobe doc-
umentation for the proper use of JavaScript action. It should be noted that the JavaScript
within the actions is not checked for syntactic or semantic correctness.

Making a Document Self-Printing
Java Copy Code

PdfJavaScriptAction selfPrint = new PdfJavaScriptAction("this.print
({bUI:true,bSilent:false,bShrinkToFit:true});");
document.getGlobalJavaScriptActions().add("MySelfPrint", selfPring);

Sound Actions

PDF has the ability to play sounds to actions. This can allow you to add audible feedback
when buttons are pressed or links activated. Sounds to be played by PdfSoundAction objects
can be specified using the Sound object. Within a PdfSoundAction, you can specify the
volume of the sound, if it will be played synchronously, if it should repeat and if it should
mixed with already playing sounds.

Acrobat version 5.0 and earlier does not support the MixWithPlayingSounds property and
Acrobat 6.0 does not correctly support the IsSynchronous property.

To make a sound action, the first step is to create a Sound object. That can be done with a
WavReader, which determines the sound characteristics (sampling rate, bits per sample, etc)
and populates a Sound object. The PdfSoundAction object refers to the sound that will be
played. This way multiple actions can refer to the same sound.

Making a Document Play a Sound When Opened
Java Copy Code

public void SoundActionOnOpened()
{

FileStream stm = new FileStream("boing.wav");
PdfGeneratedDocument doc = new PdfGeneratedDocument();
PdfGeneratedPage page1 = doc.addPage(PdfDefaultPages.letter());
WavReader reader = new WavReader(stm);
Sound sound = Sound.fromWavReader(reader);
PdfSoundAction soundAction = new PdfSoundAction(sound);
doc.getAdditionalActions().getOnDocumentOpened().add(soundAction);
doc.save("soundonopened.pdf");
}

}

- 177 -

http://partners.adobe.com/public/developer/en/acrobat/sdk/AcroJS.pdf
http://partners.adobe.com/public/developer/en/acrobat/sdk/AcroJS.pdf

Chapter 3

Show/Hide Action

The PdfShowHideAction is used to make sets of annotations or form fields visible or invisible.
It does this by setting the Hidden property within an annotation or field. The action can show
or hide an arbitrary number of fields or annotations using a set of PdfAnnotationIdentifier
objects. Each PdfAnnotationIdentifier either refers to an annotation by the index of the page
and the index of the annotation within the page's collection or by FieldFullName (if the
annotation is a form field).

Generally speaking, it is more convenient to use the FieldFullName for widget annota-
tions instead of the page index/annotation index pair as it is immune to the annotation
getting moved from page to page or having its order on the page changed. If the annota-
tion is a widget annotation and is the child of a FormField, be sure to set the FieldName
and ParentField properties of the widget annotation to ensure that FieldFullName is cor-
rect. If the ParentField is not properly set, DotPdf will set it for you on save, but this will
cause the FieldFullName to change.

Showing and Hiding an Annotation

This will create a one page document that will have three button annotations. The first button
will be hidden when the button named "Hide" is pressed and will be shown when the button
named "Show" is pressed.

Named Actions

PDF defines a type of action called a Named action which includes the name of a particular
navigation action to take. These actions are ways for changing the current page being viewed.
They are more convenient for coding than PdfGoToView actions in that PdfGoToView actions
always need an absolute page number, whereas named actions are always relative to your cur-
rent page.

Available names are:

l NextPage

l PrevPage

l FirstPage

l LastPage

The PDF specification allows nearly any arbitrary name for the action, but viewers are
only responsible for responding to the four standard names. Viewers will typically ignore
anything beyond the standard names. You can use the static method PdfNamedAc-
tion.IsStandardName to determine if a name is standard or not.

Adding Navigation Buttons to a Page
Java Copy Code

- 178 -

Programming with JoltPdf

public void AddNavigationButtons(PdfGeneratedPage page, int pageIndex)
{

String[] labels = new String[] { "|<", "<", ">", ">|" };
String[] names = new String[] { "FirstPage", "PrevPage", "NextPage",

"LastPage" };

for (int i = 0; i < labels.length; i++)
{

PdfBounds bounds = new PdfBounds(36 + 40 * i, page.getMediaBox
().getTop() - 40, 36, 36);

PushButtonWidgetAnnotation button = new PushButtonWidgetAnnotation
(bounds, String.Format("p{0}b{1}", pageIndex, i), null, null);

// The FieldName must be unique, but the Name need not be.
button.setName(labels[i]);
button.getAdditionalActions().getOnClickUp().add(new PdfNamedAction

(names[i]));
page.getAnnotations().add(button);

}
}

public void NavigationButtons()
{

PdfGeneratedDocument doc = new PdfGeneratedDocument();
string fontResName = doc.Resources.Fonts.AddFromFontName("Arial

Black");
for (int i = 0; i < 4; i++)
{

PdfGeneratedPage page = doc.AddPage(PdfDefaultPages.Letter);
page.DrawingList.Add(new PdfTextLine(fontResName, 300, String.Format

("{0}", i + 1), new PdfPoint(200, 400)));
AddNavigationButtons(page, i);

}
doc.Save("navbuttons.pdf");

}

Submit Form Actions

The PdfSubmitFormAction is an action that will cause data within the form of the current
PDF to be submitted to a remote client. The action has a number of flags that control what
data will be submitted and the format of the submission. Formats include FDF, XFDF,
HTML, and PDF. The action also has a property called Fields which can be used to exclude or
include any particular field within the document.

Like PdfShowHideAction, the Fields in PdfSubmitFormAction are referenced with a PdfAn-
notationIdentifier. Using PdfAnnotationIdentifier with a form full name will be more reli-
able to changes than page/annoation indexes.

Reset Form Action

The PdfResetFormAction is an action that will cause fields within the form of the current PDF
to be reset to their default value. Most fields have a DefaultValue property that will be used
for the field. The action also has a property called Fields which can be used to exclude or
include any particular field or fields within the document in the reset.

- 179 -

Chapter 3

Like PdfShowHideAction, the Fields in PdfResetFormAction are referenced with a PdfAn-
notationIdentifier. Using PdfAnnotationIdentifier with a form full name will be more reli-
able to changes than page/annoation indexes.

- 180 -

Programming with JoltPdf

Annotations
PDF comes with a rich set of annotations and the means of representing the annotation on
the page and controlling the interactions with the user. Annotations can be anything from
simple marks on the page to a complex set of appearances with attendant complex behaviors.
Most annotations in PDF are supplied with a default appearance by the viewer, but using
drawing template resources, it's easy to make annotations appear as you wish.

Each PdfGeneratedPage object contains a property called Annotations which is a collection of
all annotations on the page. Annotations are located on the page with a Bounds property that
defines the location and dimensions of the annotation. The location and orientation by
default follows the page's orientation unless it is a sticky note/popup or if the NoRotate prop-
erty is set to true.

Annotations fall into three broad categories:

1. General annotations - including:

l LinkAnnotation

l OpaqueAnnotation

l PopupAnnotation

l SoundAnnotation

2. Mark up annotations - including:

l CaretAnnotion

l CalloutAnnotation

l EllipseAnnotation

l InkAnnotation

l LineAnnotation

l PolygonAnnotation

l PolylineAnnotation

l RectangleAnnotation

l RedactionProposalAnnotation

l RubberStampAnnotation

l StickyNoteAnnotation

l TextBoxAnnotation

l TextMarkupAnnotation

l TypeWriterAnnotation

3. Widget annotations - including:

l CheckboxWidgetAnnotation

l ChoiceWidgetAnnotation

l PushButtonWidgetAnnotation

l RadioButtonWidgetAnnotation

- 181 -

Chapter 3

l SignatureWidgetAnnotation

l TextWidgetAnnotation

Mark up annotations are annotation types that are used to describe annotations that are used
for document mark up or review. Widget annotations are used to define form fields for data
collection or user interaction. General annotations are all else.

All annotations will inherit from the abstract class BaseAnnotation. All markup annotations
will inherit from BaseMarkupAnnotation. All widget annotations inherit from BaseWid-
getAnnotation.

Properties Common To All Annotations

All annotation inherit from the class BaseAnnotation. BaseAnnotation defines a set of prop-
erties that are common to all annotation types. While all annotations have these properties,
not all annotations use them or use them in the same way.

Property Name Property Type Required Meaning
AdditionalActions AnnotationAdditionalActions A collection of annotation

events by name with an
associated collection of
actions to take when that
event happens. These are
usually reserved for widget
annotations, but the PDF
specification demands
that they are available in
all annotation types
whether or not they are
meaningful.

AnnotationType string Gets the original type of
the annotation if read
from a PDF file, else
empty string.

Appearance AppearanceSet A collection of appear-
ances to be used for this
annotation.

Border AnnotationBorder For simple annotation
types (circle, rectangle,
polygon), sets the corner
radii (if applicable), line
width, and line dash pat-
tern. It is generally easier
to control the actual
appearance of a custom
annotation by creating an
appearance.

BorderStyle BorderStyle For any annotation with a
border, define the line
style of the annotation. It
is generally easier to con-
trol the actual appearance
of a custom annotation by
creating an appearance.

- 182 -

Programming with JoltPdf

Property Name Property Type Required Meaning
Bounds PdfBounds Yes Gets or sets the boundary

rectangle for this annota-
tions. This rectangle is in
page coordinate and PDF
standard units. The
Bounds will be oriented
relative to the page and its
Rotation unless NoRotate
is set to true.

ClickActions PdfActionList A set of actions performed
when the annotation has
been clicked.

Color IPdfColor Gets or sets the dominant
color for the annotation.
The interpretation of Color
depends on the annota-
tion. It may represent the
color of the annotations
icon (if any) or the border
of the annotation.

Contents string Represents the text of the
annotation. Its inter-
pretation depends on the
annotation type. For
sticky note annotations, it
will be the contents of the
note.

DefaultAppearanceState string Represents the ini-
tial/default state of an
annotation. When an
annotation is "Normal"
(no interaction), the
appearance that will be
used for the annotation
will be Appear-
ance.Normal[DefaultAp-
pearanceState].

Hidden bool If true, the annotation will
neither be visible nor will
it print.

Invisible bool If true, if the annotation
type is not recognized by
the viewer, it will not be
displayed, otherwise the
viewer will try to make a
substitute appearance.

IsParentRequired bool Yes If true, this annotation
type requires the Parent
property to be set.

- 183 -

Chapter 3

Property Name Property Type Required Meaning
IsTransparent bool If set to true, indicates

that the Color property
will be ignored. This does
not indicate opacity.

Locked bool If set to true, indicates
that the annotation may
not be selected or moved
(although its Contents
may be editable).

ModificationDate DateTime Gets or sets the modi-
fication date of the annota-
tion. DotPdf does not
track or modify this prop-
erty.

Name string Gets or sets the name of
the annotation. This
string is an identifier that
is typically used for
JavaScript actions to loc-
ate a particular annota-
tion. It should be unique
for annotations on a given
page. If there are annota-
tions with duplicate
names, DotPdf will make
the names unique if neces-
sary on save.

NoRotate bool If set to true, the annota-
tion will not be rotated
with the page rotation.

NoView bool If set to true, the annota-
tion will not be visible and
will not interact with the
user, but it will be printed.
This is one way of making
a print-only watermark on
a page.

NoZoom bool If set to true, the annota-
tion will not zoom with
the viewer but instead will
be displayed in its native
size.

ParentPage PdfGeneratedPage Sometimes Gets or sets the page on
which the annotation is
attached. This property is
encouraged but is only
required on ScreenAn-
notations.

- 184 -

Programming with JoltPdf

Property Name Property Type Required Meaning
Print bool If set to true, indicates

that the annotation
should be printed with the
document.

ReadOnly bool If set to true, the annota-
tion will not interact with
the user.

ToggleNoView bool If set to true, indicates
that when the mouse
enters the annotation, the
NoView property should
be toggled.

Properties Common To All Mark up Annotations

BaseMarkupAnnotation defines a set of properties that are common to all annotation types.
While all mark up annotations have these properties, not all mark up annotations use them
or use them in the same way.

Property Name Property Type Required Meaning
AuthorName string Gets or sets the author of the

annotation. Conventionally,
this will be set to the current
username or the full name of
the user who is making the
annotation.

CreationDate DateTime Yes, auto-
matic

Gets the date and time when
the annotation was created.
This value is set automatically
by the constructor of
BaseMarkupAnnotation to the
current time.

InReplyTo BaseAnnotation Null unless the annotation is
meant to be a reply to another
existing annotation.

InReplyToRelation ReplyRelation Describes the relationship of a
reply annotation. Not required,
but only meaningful if
InReplyTo is set.

Intent AnnotationIntent Yes, auto-
matic

Describes the intent of the
annotation. When required, this
is set by individual classes.

- 185 -

Chapter 3

Property Name Property Type Required Meaning
Popup PopupAnnotation Gets or sets an annotation to be

displayed as a Popup to a
markup annotation. In the ori-
ginal version of Acrobat, a
sticky note was the only annota-
tion type with a pop-up text
window and was a special case.
In later versions, the ability to
add pop-up information to an
annotation was added to all
mark up annotations.

RichTextContent XmlDocument RichTextContent is an XML rep-
resentation of marked up text
for display. It allows the body,
p, i, b, and span tags. If you set
the RichTextContent property,
be sure to set the Content prop-
erty to the plain text equivalent.

Transparency double Gets or sets the overall trans-
parency of the annotation. A
value of 1.0 means fully trans-
parent and a value of 0.0 means
fully opaque.

Properties Common to All Widget Annotations

BaseWidgetAnnotation defines a set of properties that are common to all widget annotation
types. While all widget annotations have these properties, not all annotations use them or use
them in the same way.

Property Name Property Type Required Meaning
BackgroundColor IPdfColor Gets or sets the color of

the background.
BorderColor IPdfColor Gets or sets the color of

the border.
ChildFields IList<IFormElement> Null
DefaultTextAppearance PdfTextAppearance Gets or sets the default

appearance of text in the
annotation.

DefaultValueAsString string Gets the default value of
the annotation as a
string.

FieldAlternateDescription string A string used to describe
the field for use in dis-
play in a user interface.
This typically gets dis-
played in a tooltip.

- 186 -

Programming with JoltPdf

Property Name Property Type Required Meaning
FieldFullName string Returns the full name of

the field. This is created
by starting with the par-
ent-most field's
FieldNameForExport (or
FieldName if
FieldNameForExport is
null), descending down
to the annotation and
separating them with '.'
characters (ex:
Address.Street.Number).
It is the user's respons-
ibility to ensure that if a
widget annotation is a
child of another field that
its ParentField is set.

FieldName string Yes Gets or sets the field's
name. This name is used
for submitting form
information (unless
FieldNameForExport is
set) and display in the
user interface. The
FieldName should be
selected so that the
FieldFullName will be
unique.

FieldNameForExport string Gets or set a field name
that will be used for data
export. The
FieldNameForExport, if
present, will be used
instead of FieldName. It
should therefore be
chosen so that
FieldFullName is unique.

HighlightAppearance WidgetHighlightAppearance Gets or sets how the wid-
get will appear when it
receives a mouse down
event.

IsFieldNoExport bool If set to true, this field
will not be exported.

IsFieldReadOnly bool If set to true, this field
cannot be edited.

IsFieldRequired bool If set to true, this field
must be set by the user.

- 187 -

Chapter 3

Property Name Property Type Required Meaning
ParentField IFormElement This property should rep-

resent the parent field of
this widget (if any). Wid-
get annotations may not
be the parent of any other
form element.

ValueAsString string Returns the value of the
form element as a string.

General Annotations

General annotations are annotations that don't really fit into any other category. These
include:

l LinkAnnotation

l OpaqueAnnotation

l PopupAnnotation

l SoundAnnotation

LinkAnnotation

In the original version of Acrobat, a link annotation was a set of regions bound to a des-
tination within the document. When actions were added to the PDF specification, link annota-
tions were changed to be a set of regions that included a ClickAction that described what
should happen when the link was clicked.

The regions are defined by a set of PdfQuadrilateral objects. This intended so that you can
delimit a set of words that are not axis aligned and they will highlight correctly. If the
Regions is empty, the Bounds will be used as the link area. If the Regions is not empty, the
Bounds will be automatically expanded to contain all the quadrilaterals.

The LinkAnnotation object comes with a number of convenience constructors for making
simple URI links or single click actions.

Property Name Property Type Required Meaning
HighlightAppearance LinkHighlightAppearance Gets or sets how the link will

appear when it is clicked.
Can be one of None, Invert,
Outline, and PushDown

Regions PdfQuadrilateralCollection A set of quadrilateral regions
that define the annotation.

Creating A Simple Link Annotation
Java Copy Code

LinkAnnotation annot = new LinkAnnotation(new PdfBounds(72, 500, 72,
72), new PdfURIAction(new Uri("http://www.atalasoft.com")));

OpaqueAnnotation

An OpaqueAnnotation represents an annotation type that is not currently supported by
DotPdf. These can only be generated by reading in a PDF file that contains unknown annota-
tions.

- 188 -

Programming with JoltPdf

PopupAnnotation

A PopupAnnotation is a companion annotation to any kind of BaseMarkupAnnotation. As
such it can never appear on its own. A PopupAnnotation may be open (in view) or closed (out
of view). The PopupAnnotation is connected to the BaseMarkupAnnotation via the Par-
entAnnotation property and the BaseMarkupAnnotation is connected to the the PopupAn-
notation via its Popup property. When in view, the PopupAnnotation will appear within its
Bounds.

Even though the PopupAnnotation expects a BaseMarkupAnnotation for its Par-
entAnnotation property, the property is a BaseAnnotation. The PDF specification allows
this, even though it is not strictly correct. If the ParentAnnotation is not a BaseMarkupAn-
notation, the properties will not reflect each other.

The PopupAnnotation has properties that represent the Contents, AuthorName, Modi-
ficationDate, and Color of the parent annotation. When the PopupAnnotation is connected to
an appropriate parent BaseMarkupAnnotation, it these properties will reflect or modify the
matching properties in the ParentAnnotation.

If you set the Contents, AuthorName, or ModificationDate before setting the Par-
entAnnotation, these property values will be lost.

Property Name Property Type Required Meaning
AuthorName string Gets or sets the author of the

annotation. Conventionally,
this will be set to the current
username or the full name of
the user who is making the
annotation.

Color IPdfColor Gets or sets the dominant color
for the annotation. The inter-
pretation of Color depends on
the annotation. It may rep-
resent the color of the annota-
tions icon (if any) or the border
of the annotation.

Contents string Represents the text of the
annotation. Its interpretation
depends on the annotation
type. For sticky note annota-
tions, it will be the contents of
the note.

IsOpen bool Gets or sets whether the
PopupAnnotation should be in
view when the document is
opened.

ModificationDate DateTime Gets or sets the modification
date of the annotation. DotPdf
does not track or modify this
property.

- 189 -

Chapter 3

Property Name Property Type Required Meaning
ParentAnnotation BaseAnnotation Gets or sets the parent annota-

tion for the PopupAnnotation.
The parent annotation should
be a BaseMarkupAnnotation
even though the PDF spe-
cification allows for any type of
annotation.

Creating A RectangleAnnotation With A PopupAnnotation Attached
Java Copy Code

public void RectangleWithPopup()
{

PdfGeneratedDocument doc = new PdfGeneratedDocument();
doc.setEmbedGeneratedContent(false);

PdfGeneratedPage page = doc.addPage(PdfDefaultPages.letter());
RectangleAnnotation rectAnnot = new RectangleAnnotation(new PdfBounds

(36, 300, 200, 200));
rectAnnot.setInternalColor(PdfColorFactory.FromRgb(1, 1, 0));
rectAnnot.setColor(PdfColorFactory.fromRgb(0, 0, 0));
page.getAnnotations().add(rectAnnot);
PopupAnnotation popup = new PopupAnnotation(new PdfBounds(36, 400,

150, 350), rectAnnot);
popup.setColor(PdfColorFactory.fromRgb(.7, 0, 0));
popup.setIsOpen(true);
page.getAnnotations().add(popup);
rectAnnot.setContents("This space intentionally left blank.");
rectAnnot.setAuthorName("Ignatius P. Reilly");

doc.save("rect_and_popup.pdf");
}

SoundAnnotation

A SoundAnnotation is a note on a page with an associated Sound object. A SoundAnnotation
appears on the page with an icon specified by IconName. When the icon is double-clicked (or
activated in some other way) by the user, it will play the sound. The PDF specification has
two recommended icon names, "Speaker" and "Mic". The specification alludes that other
names may be supported, but there is no further information as to what those names might
be.

If you want a specific icon, it's best to create a custom appearance for the annotation.

Creating A Sound Annotation
Java Copy Code

- 190 -

Programming with JoltPdf

FileImageInputStream stm = new FileImageInputStream ("mysound.wav");

WavReader reader = new WavReader(stm);
Sound sound = Sound.fromWavReader(reader);
PdfGeneratedDocument doc = new PdfGeneratedDocument();
PdfGeneratedPage page = doc.addPage(PdfDefaultPages.letter());
SoundAnnotation anno = new SoundAnnotation(new PdfBounds(72, 600, 72,

72));
anno.setSound(sound);
page.getAnnotations().add(anno);
doc.save("soundannot.pdf");

}

Markup Annotations

Markup annotations are intended for document editing and collaboration. The annotations
include:

l CalloutAnnotation

l CaretAnnotation

l EllipseAnnotation

l InkAnnotation

l LineAnnotation

l PolygonAnnotation

l RectangleAnnotation

l RedactionProposalAnnotation

l RubberStampAnnotation

l StickyNoteAnnotation

l TextBoxAnnotation

l TextMarkupAnnotation

l TypeWriterAnnotation

CalloutAnnotation

A CalloutAnnotation is a TextBoxAnnotation that also serves to point to content on the page.
A CalloutAnnotation includes a Line that defines where the annotation points as well as a
LineEnding that defines how the end of the line should appear. There are no guidelines as to
how the Line should appear, but generally speaking, it should start from one edge of the
Bounds nearest to the target and end at the point of interest. While the point of origin doesn't
have to start at the annotation, if a user moves the annotation in Acrobat, the viewer will
change the point of origin.

To make it easier to use there CalloutAnnotation constructor that includes a PdfPoint describ-
ing where the annotation will point and it will choose an appropriate set of points in order to
make the call out line look least offensive. In addition, the CalloutAnnotation also has a
method called PointAt(PdfPoint target) which will return a new CalloutLine object that points
to the given point.

- 191 -

Chapter 3

Property Name Property Type Required Meaning
Line CalloutLine Gets or sets an object that

defines the geometry of the line
that will be drawn for the
annotation. CalloutLine is an
abstract type and may be either
a TwoPointCalloutLine or a
ThreePointCalloutLine. Oddly
enough, this property is valid if
it is null. In this case, the Cal-
loutAnnotation will render the
same as a TextBoxAnnotation.

LineEnding LineEndingKind Gets or sets the line ending for
the callout line which will
appear at the target point.

Creating A CalloutAnnotation
Java Copy Code

CalloutAnnotation annot = new TextBoxAnnotation(new PdfBounds(72, 360,
300, 200),

"Lorem ipsum sic dolor", new PdfPoint(144, 200));
somePage.getAnnotations().add(annot);

CaretAnnotation

A CaretAnnotation represents an editor's markup where text or other content should be inser-
ted. The caret is defined by the Bounds of the annotation. The caret symbol will be drawn
such that it fills the bounds with the point of the caret centered left/right and pointing to the
top of the bounds.

PropertyName Property Type Required Meaning
InsetArea PdfBounds A rectangle that specifies mar-

gins around the caret symbol.
The rectangle needs to be fully
contained within the Bounds
rectangle.

Symbol CaretSymbol Changes the symbol used for
the caret. When set to none, the
symbol will be the default caret
shape. When set to Paragraph,
it will be the paragraph symbol
(¶).

Creating A Caret Annotation, Showing The Bounds
Java Copy Code

- 192 -

Programming with JoltPdf

public void Caret()
{

PdfGeneratedDocument doc = new PdfGeneratedDocument();
PdfGeneratedPage page = doc.addPage(PdfDefaultPages.letter());
string font = doc.getResources().getFonts().addFromFontName("Times

New Roman");
page.getDrawingList().add(new PdfTextLine(font, 18, "Here is some

sample text", new PdfPoint(72, 750)));
CaretAnnotation caret = new CaretAnnotation(new PdfBounds(80, 730,

20, 20));
page.getAnnotations().add(caret);
page.getDrawingList().add(new PdfRectangle(caret.Bounds.Expand(0.5),

PdfColorFactory.fromRgb(1, 0, 0), .5));
doc.save("caret.pdf");

}

Output from the above code snippet:

Ell ipseAnnotation

An EllipseAnnotation is identical to a RectangleAnnotation except that it is rendered as an
ellipse that fits within the Bounds property.

InkAnnotation

An InkAnnotation is meant to be a representation of a collection strokes made by a stylus of
some kind. Unlike some ink representations, there is no sense of pressure or velocity. Ink is
represented by a collection of collection of PdfPoint objects, each point representing a location
hit by a stylus.

Property Name PropertyType Required Meaning
AutoCalculateBounds bool If set to true, the Bounds

property will be calculated
based on the points in the
collection.

InkList IList<PdfPointCollection> Each element in the list is a
PdfPointCollection, which
itself is a collection of
PdfPoint objects. Each ele-
ment is a (possibly) disjoint
stroke. No lines are drawn to
connect strokes.

LineAnnotation

A LineAnnotation is representation of a line on the page. It may contain decorative line end-
ings, a caption, and an intended usage. Usage refers to the intent of the line which may be
one of Line, Arrow, or Dimension.

- 193 -

Chapter 3

When a line annotation has a caption, the caption may be positioned above the line or within
the line by setting the CaptionPositioning property. Normally, captions are positioned
centered along the length of the line and at a fixed vertical position based on Cap-
tionPositioning, but by setting the CaptionOffset property, the caption will be moved relative
to its normal placement based on that value. For example, if you wanted to position the cap-
tion below the line, you would set CaptionPositioning to Top and set CaptionOffset to new
PdfPoint(0, -fontAscentInPoints).

A line may have a set of leader lines attached to it. Leader lines are perpendicular ends that
extend from the line, usually to indicate a dimension.

A leader line is made from three parts, a leader line, a leader line extension and a leader line
offset. A line should only have a leader line extension and a leader line offset if it also has a
leader line. These elements are in PDF units.

Property Name Property Type Required Meaning
CaptionOffset PdfPoint The relative offset of place-

ment from its normal pos-
ition.

CaptionPositioning CaptionPositionKind One of either Top or Inline,
specifying whether the text
will appear above or within
the line itself.

EndPt PdfPoint Yes Gets or sets the end point
of the line.

IsCaptioned bool Gets or sets whether the
Content property will be
used as a caption.

LeaderLineExtensionLength double Gets or sets the length of
the leader line extensions
(see diagram).

LeaderLineLength double Gets or sets the length of
the leader lines.

LeaderLineOffset double Gets or sets the offset of the
leader line from an object
being measured.

- 194 -

Programming with JoltPdf

Property Name Property Type Required Meaning
LineEnding LineEndingKind[] A two entry array con-

taining the LineEndingKind
for the start and the end of
the line.

StartPt PdfPoint Yes Gets or sets the start point
of the line.

Usage LineUsageKind Gets or sets the intent of
the line.

PolygonAnnotation And PolylineAnnotation

A PolygonAnnotation is an annotation that is represented by three or more points connected
in a closed path.

Property Name Property Type Required Meaning
Effect BorderEffect Gets or sets an effect to

apply to the border of the
polygon when it is rendered.

InternalColor IPdfColor Gets or sets an internal
color of the polygon.

IsInternalColorTransparent bool When set to true, the
internal color is trans-
parent.

LineEnding LineEndingKind[] Gets or sets the line ending
for an open polygon. The
PDF specification indicates
that for a polygon, these ele-
ments may be present even
though they are ignored.
The will be honored in
PolylineAnnotation.

Vertices IList<PdfPoint> A collection of PdfPoint that
represent the vertices of the
polygon. There should be a
minimum of three points in
the collection for a valid
polygon.

A PolylineAnnotation is identical to a PolygonAnnotation except that it the LineEndings will
be honored and a PolylineAnnotation is valid with a minimum of two points.

RactangleAnnotation

A RectangleAnnotation is an annotation that represents a rectangle drawn on the page. The
rectangle may have an outline or it may be filled with a color. It may also have an effect
applied to the border. The EllipseAnnotation inherits directly from RectangleAnnotation and
is no different except in the shape that will be drawn on the page.

Property Name Property Type Required Meaning
Effect BorderEffect Gets or sets an effect to apply

when rendering the border of
the rectangle.

- 195 -

Chapter 3

Property Name Property Type Required Meaning
InternalColor IPdfColor Gets or sets the color used to

fill the rectangle.

RedactionProposalAnnotation

The RectactionProposalAnnotation is an annotation that indicates an area on the page to be
redacted later by a viewer or other PDF processing tool. The RedactionProposalAnnotation
does not perform actual redaction nor does it change page content in any way. When a redac-
tion is applied by a viewer, the annotation is removed from the page, all content within the
area of redaction will be stripped and the redaction appearance will be added to the page's
content.

At a minimum, the RedactionProposalAnnotation needs the Bounds to be set to the area of
the document to be redacted. You can also use the Regions property to create a set of PdfQuad-
rilateral objects that will be used for the redaction area.

There are a number of properties that can be set that affect how the redaction will appear
after it has been applied. For example, if you set the OverlayText property, that text will be
written into the redaction area. This is useful if you wanted each redaction to have a note on
it to alert the reader why the content is not present ("removed by court order", for example).

Property Name Property Type Required Meaning
AutoGenerateBasicAppearance bool If set to true, the

annotation will auto-
generate a simple
appearance upon
being rendered. If
the Regions col-
lection is empty, it
will generate a single
rectangle outlined
with the annota-
tion's Color. If the
Regions collection is
not empty, it will
generate a single
PdfPath with each
quadrilateral out-
lined in the annota-
tion's Color.

DefaultTextAppearance PdfTextAppearance This property, if set,
will represent how
the OverlayText will
appear on the
annotation. If not
set, the text, if any,
will appear in Hel-
vetica 12 point.

- 196 -

Programming with JoltPdf

Property Name Property Type Required Meaning
IsOverlayTextRepeated bool If set to true, the

OverlayText string
will be repeated over
the surface of the
redacted area when
the redaction is
applied.

OverlayText string Gets or sets text that
will be rendered on
the redaction area
after the redaction
has been applied.

RedactionInteriorColor IPdfRgbColor An RGB color that
will be used to
render the interior
area of the redaction
after it has been
applied. If Redac-
tionTemplate is set,
this will be ignored.

RedactionTemplate string Gets or sets the
name of a template
resource to use when
rendering redaction
after it has been
applied.

Regions PdfQuadrilateralCollection Gets a collection of
PdfQuadrilateral
objects to use for the
area(s) to be redac-
ted. If this collection
is non-empty, upon
rendering, the
Bounds property will
be adjusted to reflect
the contents of the
Regions.

TextAlignment AnnotationTextAlignment Gets or sets how the
OverlayText will
appear when
rendered.

Adding A Simple Redaction Proposal To A Page
Java Copy Code

- 197 -

Chapter 3

PdfGeneratedDocument doc = new PdfGeneratedDocument();
doc.setEmbedGeneratedContent(false);

PdfGeneratedPage page = doc.addPage(PdfDefaultPages.letter());

PdfTextBox box = new PdfTextBox(new PdfBounds(72, 400, 250, 150), "Times-
Roman", 12, "Lorem ipsum dolor sit amet, consectetur adipiscing elit. Integer
sed diam id ipsum egestas lacinia. Nulla vel nulla sit amet elit aliquet
feugiat. Donec varius euismod augue, vel lacinia arcu mollis nec. In tempor
neque vitae velit dapibus cursus. Etiam ut sodales neque. Integer quis sem
orci. Praesent tincidunt odio non sapien adipiscing vestibulum. Duis porttitor
quam ut metus posuere at venenatis velit gravida. Nulla facilisi. Ut dapibus
suscipit risus, vitae tempor velit adipiscing id. Vestibulum ante ipsum primis
in faucibus orci luctus et ultrices posuere cubilia Curae; Fusce mattis
volutpat metus, ac molestie tortor tristique sed. Cras lacinia facilisis
lobortis. Duis elementum congue bibendum.");
page.getDrawingList().add(box);

RedactionProposalAnnotation redaction = new RedactionProposalAnnotation(new
PdfBounds(72, 450, 150, 36));
redaction.setColor(PdfColorFactory.fromRgb(1, 0, 0));

page.getAnnotations().add(redaction);

doc.save("simpleredact1.pdf");

This will add a red hollow box on page which when the redaction is actually applied by a
viewer will remove the text below it and leave a blank spot behind.

RubberStampAnnotation

The RubberStampAnnotation is an annotation that is used to mark a page with standard text
as if it was created by a rubber stamp. The PDF specification defines a list of standard rubber
stamp types for use in this annotation. Even though the text of the rubber stamp can be set to
anything, the specification indicates that only this set needs to be supported:

l Approved

l AsIs

l Confidential

l Departmental

l Draft

l Experimental

l Expired

l Final

l ForComment

l ForPublicRelease

l NotApproved

l NotForPublicRelease

- 198 -

Programming with JoltPdf

l Sold

l TopSecret

If you want to ensure that you create RubberStampAnnotation objects with supported rub-
ber stamp kinds, either use the RubberStampAnnotation that takes a RubberStampKind
or use the utility method FromRubberStampKind() to covert a RubberStampKind to a
string.

Property Name Property Type Required Meaning
StampLabel string Yes This is the label that will be

used for the rubber stamp.
Although it can be any non-
null, non-empty string, there is
no guarantee that anything but
the standard types can be
rendered by a viewer.

Creating A Top Secret Stamp
Java Copy Code

PdfGeneratedDocument doc = new PdfGeneratedDocument();
PdfGeneratedPage page = doc.AddPage(PdfDefaultPages.letter());

RubberStampAnnotation annot = new RubberStampAnnotation
(RubberStampKind.TOPSECRET, new PdfBounds(72, 650, 144, 72));
page.getAnnotations().add(annot);

doc.save("topsecretstamp.pdf");

StickyNoteAnnotation

A StickyNoteAnnotation represents a note of information placed on the page. The text of the
information is stored in the Contents property of the annotation. The annotation can also
have one of a set of standard icons associated with it on the page and the annotation may be
either an "open" or "closed" state. When a StickyNoteAnnotation is closed, only the icon is vis-
ible. When it is open, a PopupAnnnotation will be shown that shows the Contents and (pos-
sibly) allows it to be edited. Finally, StickyNoteAnnotations can be used as part of a review
process. The PDF specification defines a general ReviewProcess and two specific ones that
each have discrete states of the review. It is possible to define your own kinds of review pro-
cess, but there is no guarantee that it will be supported by any particular PDF viewer.

Property Name Property Type Required Meaning
IconName string A name of an icon to use for the

annotation on the page. If this
property is not set, the icon will
default to "Note".

IsOpen bool Gets or sets the open state of
the sticky note.

ReviewProcess ReviewProcess Gets or sets the review process
for this sticky note.

- 199 -

Chapter 3

The IconName can be set to a standard name by using static properties in Stick-
yNoteAnnotation. The entire list can be retrieved from the StandIconNames static prop-
erty.

Making A Help Sticky Note
Java Copy Code

PdfGeneratedDocument doc = new PdfGeneratedDocument();
doc.setEmbedGeneratedContent(false);

PdfGeneratedPage page = doc.addPage(PdfDefaultPages.Letter);

StickyNoteAnnotation sticky = new StickyNoteAnnotation(new PdfBounds
(144, 400, 72, 72), "note text here", new PdfBounds(156, 420, 100,
100));
sticky.Color = PdfColorFactory.fromRgb(1, 1, .8);
sticky.IconName = StickyNoteAnnotation.HelpIconName;
page.getAnnotations().add(sticky);
doc.save("stickynote.pdf");

If you use the StickyNoteAnnotation constructor that has a popupBounds parameter, the
constructor will also construct and attach a PopupAnnotation to the StickyNote annota-
tion.

TextBoxAnnotation

A TextBoxAnnotation is simply a box on the page with text in it. Unlike the Stick-
yNoteAnnotation, the text box annotation doesn't have an open/closed state, but is instead
always open and constrained by the bounds. The text may be either plain text, using the Con-
tent property or rich text, using the RichTextContent and the Content properties (the Content
property should be set to a plain text equivalent of the rich text).

Property Name Property Type Required Meaning
DefaultTextAppearance PdfTextAppearance Gets or sets the appear-

ance of text in the text
box. If not set or set to
null, the text appearance
will default to 10pt Hel-
vetica.

DefaultRichTextTyleString string Gets or sets the default
style string used for rich
text, for example "font:
12pt Arial".

Effect BorderEffect Gets or sets a border
effect for the text box.

InsetArea PdfBounds Gets or sets the inset area
for the text box, creating
margins for the text. This
property should be set so
that it is fully contained
within the Bounds prop-
erty.

- 200 -

Programming with JoltPdf

Property Name Property Type Required Meaning
TextAlignment AnnotationTextAlignment Gets or sets how the text

will be aligned or jus-
tified in the Bounds.

Creating A TextBoxAnnotation
Java Copy Code

TextBoxAnnotation annot = new TextBoxAnnotation(new PdfBounds(72, 360,
300, 200), "Lorem ipsum sic dolor");
annot.Color = PdfColorFactory.fromRgb(.39, .58, .92);
somePage.getAnnotations().add(annot);

TextMarkupAnnotation

A TextMarkupAnnotation is not an annotation that contains text. Instead, it is a set of pos-
sible mark-ups to add to text on a page. The annotation is not itself associated with the text
on the page at all. Any associations or relationships between the annotation and the text is
made by the PDF viewing software.

The location of the markup is represented by the Regions property, which is a PdfQuad-
rilateralCollection of (possibly) disjoint quadrilaterals that surround areas of interest.

The appearance of the markup is determined by the MarkupKind property which is one of:

l Highlight

l Underline

l Squiggly

l StrikeOut

The the particular markup will be rendered in the Color of the annotation.

Property Name Property Type Required Meaning
MarkupKind TextMarkupKind Gets or sets the type of the

markup.
Regions PdfQuadrilateralCollection Defines the areas of interest

for the annotation.

Creating A Highlight TextMarkupAnnotation
Java Copy Code

- 201 -

Chapter 3

PdfGeneratedDocument doc = new PdfGeneratedDocument();
doc.setEmbedGeneratedContent(false);

PdfGeneratedPage page = doc.addPage(PdfDefaultPages.letter());

PdfTextBox box = new PdfTextBox(new PdfBounds(72, 400, 250, 150),
"Times-Roman", 12,
"Lorem ipsum dolor sit amet, consectetur adipiscing elit.");
page.getDrawingList().add(box);

TextMarkupAnnotation textMarkup = new TextMarkupAnnotation
(TextMarkupKind.Highlight);
textMarkup.setColor(PdfColorFactory.fromRgb(1, 1, 0));
textMarkup.getRegions().add(new PdfQuadrilateral(72, 410, 94, 480, 80,
500, 68, 440));
page.getAnnotations().add(textMarkup);
doc.save("highlightmarkupannot.pdf");

TypeWriterAnnotation

The TypeWriterAnnotation is used for placing text on the page in a way that implies no real
constraints to the text boundary and very little extra in the appearance beyond the text itself.
The annotation itself inherits from the TextBoxAnnotation. By default, the text is placed
using the annotation's StartPoint property. This point will be the left edge and baseline of the
text in the annotation. The PDF specification uses the Bounds property for the placement of
the text, but this can be cumbersome. If the AutoGenerateBounds property is true, the
Bounds will be calculated from the StartPoint, otherwise the bounds will be taken as is and
the appearance may be unpredictable.

Property Name Property Type Required Meaning
AutoGenerateBounds bool If set to true (default), the

annotation will use the StartPt
property, the Contents prop-
erty, and the font information
to calculate the Bounds prop-
erty at render time. Lines will
be split at '\r' or '\n' characters.

AutoGenerateInsetArea bool If set to true and if AutoGen-
erateBounds is true, then the
InsetArea will be calculated as
if it were the bounds and the
Bounds will be calculated by
expanding the InsetArea by the
margins.

LeftRightMargin double If AutoGenerateBounds is true,
this value will be used to create
margins on the left and right
edges. Must be non-negative.

StartPoint PdfPoint If AutoGenerateBounds is true,
this is starting point for text
within the annotation. The X
coordinate will be the left edge
of the text and the Y coordinate
will be the text baseline.

- 202 -

Programming with JoltPdf

Property Name Property Type Required Meaning
TopBottomMargin double If AutoGenerateBounds is true,

this value will be used to create
margins on the top and bottom
edges. Must be non-negative.

Note that even though the PDF specification is clear about the intent and usage of the
InsetArea of a TypeWriterAnnotation, Adobe Acrobat does not honor it correctly, nor does
Acrobat honor a custom appearance for the annotation. The LeftRightMargin an TopBot-
tomMargin are therefore not recommended for use with Adobe Acrobat.

Creating TypeWriter Annotation And Showing Its Bounds
Java Copy Code

PdfGeneratedDocument doc = new PdfGeneratedDocument();
String fontName = "Helvetica";
PdfGeneratedPage page = doc.addPage(PdfDefaultPages.letter());

TypeWriterAnnotation annot = new TypeWriterAnnotation(new PdfPoint(72,
750), "This is\rannotation text.");
annot.setDefaultTextAppearance(new PdfTextAppearance(fontName, 8));
page.getAnnotations().add(annot);

// this is the method used by the annotation during rendering
PdfBounds bounds = annot.calculateBounds(doc.getResources(),
annot.getStartPoint(), annot.getContents());
PdfRectangle boundsRect = new PdfRectangle(bounds,
PdfColorFactory.fromRgb(1, 0, 0), 1);
page.getDrawingList().add(boundsRect);
doc.save("typewriter.pdf");

Widget Annotations

Widget annotations are used for interactive forms. Each widget represents a specific type of
user-interface element and implements the interface IFormElement, which describes the con-
tents and behavior of a PDF form field. The supported types of widget annotations are:

l CheckboxWidgetAnnotation

l ChoiceWidgetAnnotation

l PushButtonWidgetAnnotation

l RadioButtonWidgetAnnotation

l SignatureWidgetAnnotation

l TextWidgetAnnotation

CheckboxWidgetAnnotation

A checkbox widget annotation is a widget annotation that represents a two-state selection. It
is typically represented by an empty box when it is not selected and a box with a mark in it

- 203 -

Chapter 3

(an x or a tick mark).

The checkbox widget annotation does not include any text, it is just the graphic rep-
resentation. The AppearanceSet is used to define how the widget will be drawn in the Normal,
Rollover and Activated appearances. Within each appearance, there should be an appearance
entry named after each state. The appearance entry for a checked widget will be named "Yes"
and the appearance entry for not checked will be named "Off". You can use the properties
CheckboxWidgetAnnotation.CheckedValue and CheckboxWidgetAnnotation.ClearedValue
instead.

While the values for the checkbox on/off states can be any two different strings, you are
strongly encouraged to use "Yes" and "Off".

Property Name PropertyType Required Meaning
CheckedValue string Gets the recommended checked

value string "Yes".
ClearedValue string Gets the recommended cleared

value string "Off".
Value string The current value of the widget.
DefaultValue string The default value of the widget.

Since there can be a great deal of code for creating appearances for checkboxes, DotPdf
includes standard appearances which will be installed in your document Resources Tem-
plates. These templates will be shared among all CheckBoxWidgets that share them. This is
done internally via the DefaultWidgetTemplates object.

If you do not supply appearances, Adobe Acrobat does not reliably render the widget.

Making A Checkbox
Java Copy Code

PdfGeneratedDocument doc = new PdfGeneratedDocument();
PdfGeneratedPage page = doc.addPage(PdfDefaultPages.letter());
CheckboxWidgetAnnotation annot = new CheckboxWidgetAnnotation
(doc.getResources(), new PdfBounds(72, 360, 18, 18), "check", null,
null);
annot.setValue(CheckboxWidgetAnnotation.getCheckedValue());
page.getAnnotations().add(annot);
doc.save("checkdocsimp.pdf");

Using this constructor implicitly installs default appearances in the widget and your doc-
ument resources.

Manually Install ing Standard Appearances
Java Copy Code

- 204 -

Programming with JoltPdf

DefaultWidgetTemplates.installDefaultAppearances(doc.getResources(),
false);
myCheck.getAppearance().getNormal().add
(CheckboxWidgetAnnotation.getCheckedValue(),
DefaultWidgetTemplates.CheckboxCheckedNormalName);
myCheck.getAppearance().getNormal().add
(CheckboxWidgetAnnotation.getClearedValue(),
DefaultWidgetTemplates.CheckboxClearedNormalName);
myCheck.getAppearance().getActivated().add
(CheckboxWidgetAnnotation.getCheckedValue(),
DefaultWidgetTemplates.CheckboxCheckedActivatedName);
mycheck.getAppearance().getActivated().add
(CheckboxWidgetAnnotation.getClearedValue(),
DefaultWidgetTemplates.CheckboxClearedActivatedName);

When you add appearances, the second argument is always the name of a Template resource.
InstallDefaultAppearances() will add in new Template resources using the names shown
above.

ChoiceWidgetAnnotation

A choice widget annotation is an annotation that lets a user select one or more items from a
list of possible choices. The list can either appear as a list in a box, a pop-up list, or a pop-up
list with a text entry field (also called a combo box). The choices are set via a list of pairs of
string objects. Each pair contains a display name and an export name. The export value is
optional. If omitted, the display value will instead be used. The purpose of the pair is so that,
for example, it would be possible to generate separate forms in different languages that dis-
play in the native language but all submit with the same export values, making the data sub-
mitted language neutral.

Like all widgets, ChoiceWidgetAnnotation requires an appearance for the widget. This appear-
ance can't be shared between different ChoiceWidgetAnnotations and is built lazily - just
before a render - so that it will be unaffected by changes in Bounds.

Text of items in the list will be rendered using the DefaultTextAppearance property.

Property Name Property Value Required Meaning
AllowMultiSelect bool If set to true, the user

can have multiple items
selected.

AutoGenerateBasicAppearance bool If set to true (default),
the widget will make and
install a basic appear-
ance for the widget.

Choices IList<ChoicePair> A list of elements to
present to the user. Each
choice pair has a Dis-
playName and an
optional ExportName.
The DisplayName will be
presented to the user.
The ExportName (or the
DisplayName, if the
ExportName is null)will
be used when submitting
the data.

- 205 -

Chapter 3

Property Name Property Value Required Meaning
CurrentSelection IList<int> Contains a list of indexes

of current selections. If
AllowMultiSelect is false,
only the first value (if
any) will be used.

FirstVisibleChoice int Gets or sets the index of
the first visible choice in
the list.

ValueAsString string Returns a comma sep-
arated list of the choices.

Creating A Simple ChoiceWidgetAnnotation
Java Copy Code

PdfGeneratedDocument doc = new PdfGeneratedDocument();
PdfGeneratedPage page = doc.addPage(PdfDefaultPages.letter());
ChoiceWidgetAnnotation anno = new ChoiceWidgetAnnotation
(ChoiceWidgetKind.ListBox, "choices", new PdfBounds(72, 400, 288,
144),

"once", "twice", "maybe three times", "my uncle is a mime");
anno.setDefaultTextAppearance(new PdfTextAppearance());
anno.getDefaultTextAppearance().setFontName("Times-Italic");
anno.getDefaultTextAppearance().setFontSize(24);
anno.setAutoGenerateBasicAppearance(true);
anno.getCurrentSelection().add(2);

doc.Form = new PdfForm();
page.getAnnotations().add(anno);
doc.getForm().getFields().add(anno);
doc.save("choicelist.pdf");

CreatingThe Appearance For A List

Note that the actual content of the list is put within a PdfMarkedContent object with the "Tx"
mark, setting it off as the text content of the box.

- 206 -

Programming with JoltPdf

PushButtonWidgetAnnotation

A PushButtonWidgetAnnotation is the simplest type of widget annotation. It has no value
associated with it. Instead, it only serves to trigger actions of some kind. This is done by
adding a new action to its AdditionalActions.ClickDown list. Like other widgets, a PushBut-
tonWidgetAnnotation needs to have one or more appearances in order to be rendered. The
class includes a property to automatically generate an appearance as well as a public factory
method for creating one.

To ensure that an appearance is made for the button, set the AutoGenerateAppearance prop-
erty to null.

The auto-generated appearance for a button is an outlined round-cornered rectangle with
centered text clipped to the outline.

Creating A Button That Plays A Sound
Java Copy Code

FileInputStream stm = new FileInputStream (@"mysound.wav");
WavReader reader = new WavReader(stm);
Sound sound = Sound.fromWavReader(reader);

PdfGeneratedDocument doc = new PdfGeneratedDocument();
PdfGeneratedPage page = doc.addPage(PdfDefaultPages.letter());
PushButtonWidgetAnnotation button = new PushButtonWidgetAnnotation

(new PdfBounds(72, 400, 144, 40),
"Now Hear This", null, null);

button.setAutoGenerateBasicAppearance(true);
PdfSoundAction action = new PdfSoundAction(sound);
button.getAdditionalActions().getOnClickDown().add(action);

doc.setForm(new PdfForm());
page.getAnnotations().add(button);
doc.getForm().getFields().add(button);
doc.save("soundbutton.pdf");

}

RadioButtonWidgetAnnotation

RadioButtonWidgetAnnotation are a button widget that is represented by a set/cleared state.
When radio buttons are cleared, they are represented by the value "Off". When they are set,
they are represented by a string value that is unique among the group of radio buttons. Radi-
oButtonWidgetAnnotations are unusual among widgets in that they are not usable in isol-
ation. RadioButtonWidgetAnnotation objects need to have a parent RadioButtonFormField
which contains the semantics for the entire group.

Like CheckBoxWidgetAnnotation objects, RadioButtonWidgetAnnotations do not have
any particular text associated with their appearance - they are usually just the button
itself. It does need its own set of appearances, but these can be created at construction
time and can be shared among all radio buttons.

The steps for creating a set of RadioButtonWidgetAnnotation objects is as follows:

- 207 -

Chapter 3

1. Make RadioButtonWidgetAnnotations for each choice, setting the FieldName to null
and passing in the string name of the "selected" value as the onValue.

2. Set the Value and DefaultAppearanceState to the either Radi-
oButtonWidgetAnnotation.ClearedValue or to the string name of its "selected" value.

3. Create a RadioButtonFormField object.

4. Set the form field's Value and Default Value to the radio button you would like selec-
ted.

5. Set the form field's FieldName.

6. Put each radio button into the form field's ChildFields collection.

7. Set each radio button's ParentField to the form field.

8. Add each radio button to the page's Annotations collection.

9. Construct a new PdfForm and assign it to the document's Form property.

10. Add the form field to the document's Form's Fields collection.

These steps are illustrated (in a slightly different order) in this sample:

Making Radio Buttons
Java Copy Code

- 208 -

Programming with JoltPdf

PdfGeneratedDocument doc = new PdfGeneratedDocument();
doc.setForm(new PdfForm());
PdfGeneratedPage page = doc.addPage(PdfDefaultPages.letter());
String font = doc.getResources().getFonts().addFromFontName("Arial");
RadioButtonWidgetAnnotation yesButton = new
RadioButtonWidgetAnnotation(doc.getResources(), new PdfBounds(72, 700,
12, 12),

null, null, null, "Yes", true);
yesButton.setDefaultAppearanceState(yesButton.getValue());

RadioButtonWidgetAnnotation noButton = new RadioButtonWidgetAnnotation
(doc.getResources(), new PdfBounds(72, 680, 12, 12),

null, null, null, "No", true);
noButton.setDefaultAppearanceState(noButton.getValue());

RadioButtonWidgetAnnotation undecidedButton = new
RadioButtonWidgetAnnotation(doc.getResources(), new PdfBounds(72, 660,
12, 12),

null, null, null, "Undecided", true);
undecidedButton.setDefaultAppearanceState(undecidedButton.getValue());

page.getAnnotations().add(yesButton);
page.getDrawingList().add(new PdfTextLine(font, 12, "Yes",

new PdfPoint(yesButton.getBounds().getRight() + 4,
yesButton.getBounds().getBottom())));

page.getAnnotations().add(noButton);
page.getDrawingList().add(new PdfTextLine(font, 12, "No",

new PdfPoint(noButton.getBounds().getRight() + 4, noButton.getBounds
().getBottom())));

page.getAnnotations().add(undecidedButton);
page.getDrawingList().add(new PdfTextLine(font, 12, "Undecided",

new PdfPoint(undecidedButton.getBounds().getRight() + 4,
undecidedButton.getBounds().getBottom())));

RadioButtonFormField ff = new RadioButtonFormField();
ff.setFieldName("Choice");
ff.getChildFields.add(yesButton);
yesButton.setParentField(ff);
ff.getChildFields().add(noButton);
noButton.setParentField(ff);
ff.getChildFields().add(undecidedButton);
undecidedButton.setParentField(ff);
ff.setValue("Yes");
ff.setDefaultValue("Yes");
doc.getForm().getFields().add(ff);
doc.save("threechoice.pdf");

RadioButtonFormField has several factory methods that do most of this work for you. It
is strongly recommended that you use these methods to avoid errors in creation of the
fields.

- 209 -

Chapter 3

Creating A Radio Set Using The Convenience Factory Method
Java Copy Code

PdfGeneratedDocument doc = new PdfGeneratedDocument();
doc.setForm(new PdfForm());
PdfGeneratedPage page = doc.addPage(PdfDefaultPages.letter());
String font = doc.getResources().getFonts().addFromFontName("Arial");

String[] values = new String[] { "Yes", "No", "Undecided" };
PdfBounds[] bounds = new PdfBounds[] {

new PdfBounds(72, 700, 12, 12),
new PdfBounds(72, 680, 12, 12),
new PdfBounds(72, 660, 12, 12)

};

RadioButtonFormField ff = RadioButtonFormField.MakeRadioSet
(doc.getResources(), page, "Choice", values[0], values[0],

values, bounds);
doc.getForm().getFields().add(ff);

for (int i = 0; i < values.length; i++)
{

page.getDrawingList().add(new PdfTextLine(font, 12, values[i],
new PdfPoint(bounds[i].getRight() + 4, bounds[i].getBottom

())));
}
doc.save("threechoiceeasy.pdf");

SignatureWidgetAnnotation

The SignatureWidgetAnnotation is used to indicate an area that needs to be signed by a user
reading the document. The SignatureWidgetAnnotation does not sign the document, it indic-
ates that a document needs a signature. The area for the signature is represented by the
Bounds. This annotation doesn't need an appearance added it.

Adding A Signature To A Document
Java Copy Code

PdfGeneratedDocument doc = new PdfGeneratedDocument();
doc.setForm(new PdfForm());
PdfGeneratedPage page = doc.addPage(PdfDefaultPages.letter());
SignatureWidgetAnnotation sig = new SignatureWidgetAnnotation(new
PdfBounds(72, 600, 200, 40), "Signature", null, null);
page.getAnnotations().add(sig);
doc.getForm().getFields().add(sig);
doc.save("signhere.pdf");

TextWidgetAnnotation

The TextWidgetAnnotation is a widget that is used to building forms with text entry. It has a
number of properties that dictate the formatting of text in the widget, making it one of the
most configurable widgets. Like most of the widget annotations, it should have an appearance
associated with it, which can be done for you if AutoGenerateBasicAppearance is true.

- 210 -

Programming with JoltPdf

Property Name Property Type Required Meaning
AutoGenerateBasicAppearance bool If set to true, before

rendering the widget
will generate a basic
appearance for the
text box.

DefaultRichTextStyleString string Gets or sets a default
rich text string to be
used to define the
style of the RichTex-
tValue of the widget.
Note that if you use
RichTextValue, you
need to also set the
Vlue property to a
plain text version of
the rich text.

DefaultTextValue string Gets or sets the
default value for the
widget.

IsColumns bool If set to true, the
MaximumLength
property will be used
to define columnar
layout of the text.
Note that IsColumns
only makes sense if
IsPassword, IsScrol-
lable, and IsFileSelec-
tion are all false.

IsFileSelection bool If set to true, the text
is meant to represent
a file selection, in
which case the value
entered is supposed
to be the path to the
file.

IsMultiLine bool If set to true, the text
entered will be
allowed to be mul-
tiple lines, otherwise
it will be forced to be
a single line. The
default is false.

- 211 -

Chapter 3

Property Name Property Type Required Meaning
IsPassword bool If set to true, then

the text entered will
be treated as a pass-
word and will not be
displayed direction.
Note that text
entered as a pass-
word should never be
stored within the
PDF, but should
instead be used and
removed from the
field. If the PDF is
saved without encryp-
tion and with a pass-
word value entered,
the password will be
stored in clear text.

IsRichText bool If set to true, then
the content of the
field will be rendered
using rich text. Even
if RichText is set to
true, any setting of
the RichTextValue
should be reflected in
the Value property as
well.

IsScrollable bool If set to true, then
the text widget will
have a scroll bar on
it if needed.

IsSpellChecked bool If set to true, then
the text in the text
widget will be
marked for any
spelling errors using
a client service, if
available.

MaximumLength int The greatest number
of characters that
may be entered into
the field. This value
must be non-neg-
ative.

RichTextValue XmlDocument The representation of
the text content
using rich text.

- 212 -

Programming with JoltPdf

Property Name Property Type Required Meaning
TextAlignment AnnotationTextAlignment Gets or sets the jus-

tification of the text
displayed in the wid-
get.

TextValue string The value to display
in the text box.

Creating A Text Field With Existing Text
Java Copy Code

PdfGeneratedDocument doc = new PdfGeneratedDocument();
PdfGeneratedPage page = doc.AddPage(PdfDefaultPages.letter());
TextWidgetAnnotation tw = new TextWidgetAnnotation(new PdfBounds(72,
350, 300, 50), "noname", "");
tw.setTextValue("Spoon");

tw.DefaultTextAppearance = new PdfTextAppearance();
tw.getDefaultTextAppearance().setFontName("Times-Italic");
tw.getDefaultTextAppearance().setFontSize(42);
page.getAnnotations().add(tw);

doc.setForm(new PdfForm());
doc.getForm().getFields().add(tw);
doc.save("textwidget.pdf");

- 213 -

Chapter 3

Annotation How To's
The following is a set of common tasks that can be done with the DotPdf annotation objects.

How To Place An Annotation

This sample creates a page with a large light blue rectangle on it and then adds a yellow rect-
angle annotation with no border.

Creating a Simple Annotation
Java Copy Code

PdfGeneratedDocument doc = new PdfGeneratedDocument();
doc.setEmbedGeneratedContent(false);

PdfGeneratedPage page = doc.addPage(PdfDefaultPages.letter());
page.getDrawingList().add(new PdfRectangle(new PdfBounds(72, 72,
page.getMediaBox().getWidth() - 144, page.getMediaBox().getHeight() -
144),
PdfColorFactory.fromRgb(.8, .8, 1)));

RectangleAnnotation rectAnnot = new RectangleAnnotation(new PdfBounds
(36, 600, 200, 100));
rectAnnot.setInternalColor(PdfColorFactory.fromRgb(1, 1, 0));
rectAnnot.setColor(null);
page.getAnnotations().add(rectAnnot);

doc.save("simpleannot1.pdf");

- 214 -

Programming with JoltPdf

How To Create An Annotation With a Custom Border

This sample creates a page with a light blue rectangle and a yellow rectangle annotation with
an orange dashed border.

Creating An Annotation With a Custom Border
Java Copy Code

PdfGeneratedDocument doc = new PdfGeneratedDocument();
doc.setEmbedGeneratedContent(false);

PdfGeneratedPage page = doc.addPage(PdfDefaultPages.letter());
page.getDrawingList().add(new PdfRectangle(new PdfBounds(72, 72,
page.getMediaBox().getWidth() - 144, page.getMediaBox().getHeight() -
144),
PdfColorFactory.fromRgb(.8, .8, 1)));

RectangleAnnotation rectAnnot = new RectangleAnnotation(new PdfBounds
(36, 300, 200, 200));
rectAnnot.InternalColor = PdfColorFactory.fromRgb(1, 1, 0);
rectAnnot.Color = PdfColorFactory.fromRgb(1, .5, 0);
rectAnnot.Border = new AnnotationBorder(0, 0, 1.5, new double[] { 4, 1
});
page.getAnnotations().add(rectAnnot);

doc.save("simpleannot2.pdf");

- 215 -

Chapter 3

How To Add a Pop-Up to a Markup Annotation

This sample shows how to add an open pop-up annotation to a markup annotation (in this
case a rectangle annotation). Note that setting the pop-up color also changes the border color
of the rectangle annotation.

Adding a Pop-Up Annotation
Java Copy Code

PdfGeneratedDocument doc = new PdfGeneratedDocument();
doc.setEmbedGeneratedContent(false);

PdfGeneratedPage page = doc.addPage(PdfDefaultPages.letter());
page.getDrawingList().add(new PdfRectangle(new PdfBounds(72, 72,
page.getMediaBox().getWidth() - 144, page.getMediaBox().getHeight() -
144),
PdfColorFactory.fromRgb(.8, .8, 1)));

RectangleAnnotation rectAnnot = new RectangleAnnotation(new PdfBounds
(36, 300, 200, 200));
rectAnnot.setInternalColor(PdfColorFactory.fromRgb(1, 1, 0));

// sets the border color to black
rectAnnot.setColor(PdfColorFactory.FromRgb(0, 0, 0));
page.getAnnotations().add(rectAnnot);
PopupAnnotation popup = new PopupAnnotation(new PdfBounds(36, 400,
150, 350), rectAnnot);

// sets the pop-up to dark red and changes the rectangle border
popup.setColor(PdfColorFactory.fromRgb(.7, 0, 0));
popup.setIsOpen(true);
page.getAnnotations().add(popup);
rectAnnot.setContents("This space intentionally left blank.");
rectAnnot.setAuthorName("Ignatius P. Reilly");

doc.save("simpleannot3.pdf");

- 216 -

Programming with JoltPdf

How To Create An Annotation With Transparency

This sample shows how to set transparency in a rectangle annotation.

Adding Transparency to an Annotation
Java Copy Code

- 217 -

Chapter 3

PdfGeneratedDocument doc = new PdfGeneratedDocument();
doc.setEmbedGeneratedContent(false);

PdfGeneratedPage page = doc.addPage(PdfDefaultPages.letter());
page.getDrawingList().add(new PdfRectangle(new PdfBounds(72, 72,
page.getMediaBox().getWidth() - 144, page.getMediaBox().getHeight() -
144),
PdfColorFactory.fromRgb(.8, .8, 1)));

RectangleAnnotation rectAnnot = new RectangleAnnotation(new PdfBounds
(36, 300, 200, 200));
rectAnnot.setInternalColor(PdfColorFactory.fromRgb(1, 1, 0));
rectAnnot.setColor(null);
rectAnnot.setIsTransparent(true);
rectAnnot.setTransparency(0.75);
page.getAnnotations().add(rectAnnot);

doc.save("simpleannot4.pdf");

How To Skin An Annotation

This sample demonstrates how to create an annotation with a custom "Normal" appearance.
For simple skinning, you should create exactly one appearance and put it in the Normal col-
lection under the name AppearanceSet.DefaultAppearanceName. This creates a rectangle with
an x.

Skinning An Annotation
Java Copy Code

- 218 -

Programming with JoltPdf

PdfGeneratedDocument doc = new PdfGeneratedDocument();
doc.setEmbedGeneratedContent(false);

PdfGeneratedPage page = doc.addPage(PdfDefaultPages.letter());

DrawingTemplate template = new DrawingTemplate(new PdfBounds(0, 0,
100, 100));
PdfColor outlineColor = PdfColorFactory.fromRgb(0, 0, .25);
PdfColor fillColor = PdfColorFactory.fromRgb(.7, 1, 1);
template.getDrawingList().add(new PdfRectangle(new PdfBounds(1, 1, 98,
98), outlineColor, 1, fillColor));
PdfPath path = new PdfPath(outlineColor, 1, null);
path.moveTo(1, 1); path.lineTo(99, 99);
path.moveTo(1, 99); path.lineTo(99, 1);
template.getDrawingList().add(path);
String templateName = doc.getResources().getTemplates().add(template);

RectangleAnnotation annot = new RectangleAnnotation(new PdfBounds(72,
300, 102, 102));
annot.setAppearance(new AppearanceSet());
annot.getAppearance().getNormal().add
(AppearanceSet.DefaultAppearanceName, templateName);
page.getAnnotations().add(annot);
doc.save("simpleannot5.pdf");

Making An Annotation With A Rollover Appearance

Annotations can have a difference appearance with separate appearances for its Normal state
and it's Rollover state.

Creating a Rollover Appearance
Java Copy Code

- 219 -

Chapter 3

public string MakeAppearance(PdfBounds bounds, PdfColor outline,
PdfColor fill, GlobalResources resources)
{

DrawingTemplate template = new DrawingTemplate(bounds);
bounds = bounds.expand(-1);
template.getDrawingList().add(new PdfRectangle(bounds, outline, 1,

fill));
PdfPath path = new PdfPath(outline, 1);
path.moveTo(bounds.getLeft(), bounds.getBottom()); path.lineTo

(bounds.getRight(), bounds.getTop());
path.moveTo(bounds.getLeft(), bounds.getTop()); path.lineTo

(bounds.getRight(), bounds.getBottom());
template.getDrawingList().add(path);
return resources.getTemplates().add(template);

}

PdfGeneratedDocument doc = new PdfGeneratedDocument();
doc.setEmbedGeneratedContent(false);

PdfGeneratedPage page = doc.addPage(PdfDefaultPages.letter());

RectangleAnnotation annot = new RectangleAnnotation(new PdfBounds(72,
300, 102, 102));
annot.setAppearance(new AppearanceSet());
PdfBounds bounds = new PdfBounds(0, 0, 100, 100);
annot.getAppearance().getNormal().add
(AppearanceSet.DefaultAppearanceName,

MakeAppearance(bounds, PdfColorFactory.fromRgb(0, 0, 0),
PdfColorFactory.fromRgb(.7, 1, 1), doc.getResources()));
annot.getAppearance().getRollover().add
(AppearanceSet.DefaultAppearanceName,

MakeAppearance(bounds, PdfColorFactory.fromRgb(.25, .25, .25),
PdfColorFactory.fromRgb(1, 1, .7), doc.getResources()));
page.getAnnotations().add(annot);
doc.save("simpleannot6.pdf");
}

Making A Sticky Note Annotation

This shows how to make a closed StickyNoteAnnotation with a "Help" icon.

- 220 -

Programming with JoltPdf

Making A Sticky Note Annotation
Java Copy Code

PdfGeneratedDocument doc = new PdfGeneratedDocument();
doc.setEmbedGeneratedContent(false);

PdfGeneratedPage page = doc.AddPage(PdfDefaultPages.letter());

StickyNoteAnnotation sticky = new StickyNoteAnnotation(new PdfBounds
(144, 400, 72, 72), "note text here", new PdfBounds(156, 420, 100,
100));
sticky.setColor(PdfColorFactory.fromRgb(1, 1, .8));
sticky.setIconName(StickyNoteAnnotation.HelpIconName);
page.getAnnotations().add(sticky);
doc.save("simpleannot7.pdf");

Adding A Review State To A Sticky Note

This sample shows how to add review conditions to a Sticky Note annotation.

Adding A Review To A Sticky Note
Java Copy Code

PdfGeneratedDocument doc = new PdfGeneratedDocument();
doc.setEmbedGeneratedContent(false);

PdfGeneratedPage page = doc.addPage(PdfDefaultPages.letter());

StickyNoteAnnotation sticky1 = new StickyNoteAnnotation(new PdfBounds
(72, 600, 72, 72), "nothing", new PdfBounds(156, 420, 100, 100));
sticky1.setIconName(StickyNoteAnnotation.CommentIconName(;
sticky1.setColor(PdfColorFactory.fromRgb(0, 1, .8));
sticky1.setAuthorName("Steve");
page.getAnnotations().add(sticky1);

StickyNoteAnnotation sticky = new StickyNoteAnnotation(new PdfBounds
(144, 600, 72, 72), "Completed set by steve hawley", new PdfBounds
(156, 420, 100, 100));
sticky.Color = PdfColorFactory.fromRgb(1, 1, .8);
sticky.setIconName(StickyNoteAnnotation.CommentIconName);
GeneralReview generalReview = new GeneralReview();
generalReview.setCurrentState(GeneralReview.CompletedStateIndex);
sticky.setReviewProcess)(generalReview;
sticky.setInReplyTo(sticky1);
sticky.setHidden(true);
sticky.setAuthorName("Steve");

page.getAnnotations().add(sticky);
doc.save("simpleannot8.pdf");

- 221 -

Chapter 3

Making a Highlight Annotation

Highlight annotations are represented by a set of quadrilaterals. They are not directly asso-
ciated with any text on the page. Any correspondence with text on the page must be made by
the creation software.

Creating a Highlight Annotation
Java Copy Code

PdfGeneratedDocument doc = new PdfGeneratedDocument();
doc.setEmbedGeneratedContent(false);

PdfGeneratedPage page = doc.addPage(PdfDefaultPages.letter());

PdfTextBox box = new PdfTextBox(new PdfBounds(72, 400, 250, 150),
"Times-Roman", 12, "...lorem ipsum text...");
page.getDrawingList().add(box);

TextMarkupAnnotation textMarkup = new TextMarkupAnnotation
(TextMarkupKind.Highlight);
textMarkup.setColor(PdfColorFactory.fromRgb(1, 1, 0));
textMarkup.getRegions().add(new PdfQuadrilateral(72, 410, 94, 480, 80,
500, 68, 440));
page.getAnnotations().add(textMarkup);
doc.save("simpleannot10.pdf");

Quadrilaterals may look unusual if the points are ordered differently. If the quadrilateral is a
simple rectangle, the first point is the lower left, the second point is the lower right, the third

- 222 -

Programming with JoltPdf

point is the upper right, and the last point is the upper left. By swapping the second and
third points, you will get a "bowtie" shape.

Making a Bow Tie Highlight
Java Copy Code

PdfGeneratedDocument doc = new PdfGeneratedDocument();
doc.setEmbedGeneratedContent(false);

PdfGeneratedPage page = doc.addPage(PdfDefaultPages.letter());

PdfTextBox box = new PdfTextBox(new PdfBounds(72, 400, 250, 150),
"Times-Roman", 12, "...lorem ipsum text...");
page.getDrawingList().add(box);

TextMarkupAnnotation textMarkup = new TextMarkupAnnotation
(TextMarkupKind.Highlight);
textMarkup.setColor(PdfColorFactory.fromRgb(1, 1, 0));
textMarkup.getRegions().add(new PdfQuadrilateral(72, 410, 80, 500, 94,
480, 68, 440));
page.getAnnotations().add(textMarkup);
doc.save("simpleannot11.pdf");

When the mark up type is changed to an underline, you can see where the line is drawn rel-
ative to the quadrilateral. For underline, it is oriented towards the logical bottom which is the
edge from the first point to the second point.

Showing the Underline Location Relative to a Highlight Annotation
Java Copy Code

- 223 -

Chapter 3

PdfGeneratedDocument doc = new PdfGeneratedDocument();
doc.setEmbedGeneratedContent(false);

PdfGeneratedPage page = doc.addPage(PdfDefaultPages.letter());

PdfTextBox box = new PdfTextBox(new PdfBounds(72, 400, 250, 150),
"Times-Roman", 12, "...lorem ipsum text...");
page.getDrawingList().add(box);

TextMarkupAnnotation textMarkup = new TextMarkupAnnotation
(TextMarkupKind.Highlight);
textMarkup.setColor(PdfColorFactory.FromRgb(1, 1, 0));
textMarkup.getRegions().add(new PdfQuadrilateral(72, 410, 94, 480, 80,
500, 68, 440));
page.getAnnotations().add(textMarkup);

textMarkup = new TextMarkupAnnotation(TextMarkupKind.Underline);
textMarkup.Color = PdfColorFactory.FromRgb(1, 0, 0);
textMarkup.Regions.Add(new PdfQuadrilateral(72, 410, 94, 480, 80, 500,
68, 440));
page.Annotations.Add(textMarkup);
doc.Save("simpleannot12.pdf");

If the TextMarkupAnnotation is constructed with TextMarkupKind.StrikeOut, the line will
run midway between the top and bottom edges. If it is constructed with Squiggly, a zig-zag
line will be drawn along the bottom edge.

How To Set An Area For Redaction

The RedactionProposalAnnotation is used to set an area for later redaction by the viewer. The
annotation itself does not remove content from the document but instead requires the viewing
application to perform that task. This example shows how a redaction can be placed with cus-
tom text to show when the redaction has been applied.

Placing a Redaction With Redaction Text
Java Copy Code

- 224 -

Programming with JoltPdf

PdfGeneratedDocument doc = new PdfGeneratedDocument();
doc.setEmbedGeneratedContent(false);

PdfGeneratedPage page = doc.addPage(PdfDefaultPages.letter());

PdfTextBox box = new PdfTextBox(new PdfBounds(72, 400, 250, 150),
"Times-Roman", 12, "...lorem ipsum text...");
page.getDrawingList().add(box);

RedactionProposalAnnotation redaction = new
RedactionProposalAnnotation(new PdfBounds(72, 450, 150, 36));
redaction.Color = PdfColorFactory.fromRgb(1, 0, 0);
redaction.getDefaultTextAppearance().setFontSize(18);
redaction.getDefaultTextAppearance().setStrokeColor
(PdfColorFactory.FromRgb(1, 1, 0));
redaction.setOverlayText("Bowdler was here.");
redaction.setIsOverlayTextRepeated(true);
redaction.setRedactionInteriorColor(PdfColorFactory.FromRgb(.8, .8,
.8));

page.getAnnotations().add(redaction);
doc.save("simpleredact2.pdf");

Using JavaScript To Calculate Values

PDF documents can contain form fields for user data entry. Using JavaScript, you can create
actions to attach to actions to calculate values of make other dynamic changes to the doc-
ument. For more information, see the JavaScript for Acrobat API Reference.

The following example uses the built-in function AFSimple_Calculate, which is provided by
Adobe Acrobat (formerly, this was in the AForm.js file, but has been precompiled into byte
code). Note that the sum field is marked read-only so that it will only show the sum.

Performing a Sum on Form Fields
Java Copy Code

- 225 -

http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/js_api_reference.pdf

Chapter 3

PdfGeneratedDocument doc = new PdfGeneratedDocument();
doc.setForm(new PdfForm());
PdfGeneratedPage page = doc.addPage(PdfDefaultPages.letter());

TextWidgetAnnotation tw = new TextWidgetAnnotation(new PdfBounds(72,
500, 36, 24), "Addend1", "0");
page.getAnnotations().add(tw);
doc.getForm().Fields().add(tw);

PdfTextLine tl = new PdfTextLine("Helvetica-Bold", 20, "+", new
PdfPoint(114, 506));
page.getDrawingList().add(tl);

tw = new TextWidgetAnnotation(new PdfBounds(130, 500, 36, 24),
"Addend2", "0");
page.getAnnotations().add(tw);
doc.getForm().getFields().add(tw);

tl = new PdfTextLine("Helvetica-Bold", 20, "=", new PdfPoint(172,
506));
page.getDrawingList().add(tl);

tw = new TextWidgetAnnotation(new PdfBounds(188, 500, 36, 24), "Sum",
"0");
tw.setIsFieldReadOnly(true);
page.getAnnotations().add(tw);
doc.getForm().getFields().add(tw);
tw.getAdditionalActions().getOnFieldRecalculating().add(new
PdfJavaScriptAction("AFSimple_Calculate(\"SUM\", new Array
(\"Addend1\", \"Addend2\"));"));
doc.getForm().getFieldCalculationSequence().add(tw);

doc.save("simplesum.pdf");

Similarly, you can use the contents of fields together to join data. For example, if you wanted
to create a signable document that contained fields for the user's first and last names with a
place to display their entire name you could make a read-only full name field which takes its
values from the other fields.

Joining Field Values
Java Copy Code

- 226 -

Programming with JoltPdf

PdfGeneratedDocument doc = new PdfGeneratedDocument();
doc.setForm(new PdfForm());
PdfGeneratedPage page = doc.addPage(PdfDefaultPages.letter());

TextWidgetAnnotation tw = new TextWidgetAnnotation(new PdfBounds(72,
500, 50, 24), "First", "");
page.getAnnotations().add(tw);
doc.getForm().getFields().add(tw);

PdfTextLine tl = new PdfTextLine("Helvetica-Bold", 12, "First Name",
new PdfPoint(72, 480));
page.getDrawingList().add(tl);

tw = new TextWidgetAnnotation(new PdfBounds(140, 500, 75, 24), "Last",
"");
page.getAnnotations().add(tw);
doc.getForm().getFields().add(tw);

tl = new PdfTextLine("Helvetica-Bold", 12, "Last Name", new PdfPoint
(140, 480));
page.getDrawingList().add(tl);

tw = new TextWidgetAnnotation(new PdfBounds(72, 200, 200, 24), "Full",
"0");
tw.setIsFieldReadOnly(true);
page.getAnnotations().add(tw);
doc.getForm().getFields().add(tw);
tw.getAdditionalActions().getOnFieldRecalculating().add(new
PdfJavaScriptAction("var fname = this.getField(\"First\").value + \"
\" + this.getField(\"Last\").value; this.getField(\"Full\").value =
fname;"));
doc.getForm().getFieldCalculationSequence().add(tw);

SignatureWidgetAnnotation sig = new SignatureWidgetAnnotation(new
PdfBounds(72, 230, 200, 40), "Signature", null, null);
page.getAnnotations().add(sig);
doc.getForm().getFields().add(sig);

doc.save("simplenamer.pdf");

- 227 -

Chapter 3

- 228 -

Programming with JoltPdf

PDF Forms
PDF Forms are a mechanism within PDF to display information and provide interaction and
data collection facilities. In the PDF Specification, these are referred to AcroForms. A PDF
Form is a hierarchical collection of fields that represent the form data as well as some inform-
ation to indication calculation order and general field appearance characteristics.

Fields are any object that implements the interface IFormElement, this interface defines core
characteristics that are common to all fields, but in practice there are two broad types of
fields: nodes and leaves. A node can have child fields and a leaf can have no child fields. In
DotPdf, all leaves will be a subclass of BaseWidgetAnnotation and all nodes will be
BaseFormField.

In the PDF specification, certain properties in a form field will be inherited from its par-
ent. DotPdf does not support this directly. When a form is read in, the inheritance is
flattened, but projecting parent properties onto their children. Upon writing, the prop-
erties are written directly from each field. It is the client's responsibility to enforce the
effect of inheritance.

PdfForm

PdfForm is the object that represents a form for data collection and all its elements. If a doc-
ument has a PdfForm, it will be accessed through the Form property of a PdfGen-
eratedDocument object. Through this object, you can access the fields in a document and
their values (if any). The form also contains properties that define default appearances for text
in the fields as well as information regarding digital signatures.

The Form property in a PdfGeneratedDocument is null by default. To create a form, you
need to assign a new PdfForm object to this property. PdForm objects can be moved from
one document to another, but care must be taken in the process because the leaf nodes of
a PdfForm tree are all BaseWidgetAnnotation obects and therefore must also be placed on
appropriate pages in the target document. Further, the PdfForm and its form fields may
refer to JavaScript methods that are defined in the source document's GlobalJavaScript
actions which must also be moved to the target document. It is strictly the client's
responsibility to

The process of making a new form from scratch can be as simple as making a PdfForm object
and assigning it to a PdfGeneratedDocument then putting fields in the form and on the pages
of the document. However, PdfForm objects can represent a tree of hierarchical fields. In order
for the hierarchy to be properly represented, each parent node will contain a collection of child
nodes. Each child should also have a reference to its parent. Since many operations may be
performed before putting a form element in a parent collection, DotPdf allows the client code
to set the parent-child and child-parent relationships. There is a utility method in PdfForm
called EnforceParentage() which will descend the tree and ensure that the relationship is cor-
rect. Be aware that if you depend on any particular form field's FieldFullName to be correct,
the parentage must be set correctly.

When you save a PdfGeneratedDocument which contains a PdfForm, EnforceParentage()
will get called automatically. The form will also be checked for cycles and other field rela-
tionship issues. If there are issues that cannot be repaired, DotPdf will throw an excep-
tion.

- 229 -

Chapter 3

Creating a Simple Form

Node Form Fields

PDF forms may represent a tree of form information. For example, you may want to collect
similar information in different places, but want to use similar names for the actual data
fields. You can do this by having a tree structure to your form. For example, you might have a
parent node named "Contact" with a child named "Phone" that has three children named
"Work", "Home", "Mobile", each with a child named "Number"; "Contact" might have another
child named "Address" with children named "Work" and "Home", each with children named
"Street", "City", "State", and "Zip". In this way, the names of the leaves can be the same and
can be treated generically by consuming code.

If the child and parent relationships of the fields are enforced, the full name of the phone
number fields would be "Contact.Phone.Work.Number", "Contact.Phone.Home.Number", and
"Contact.Phone.Mobile.Number".

In DotPdf, there are several types of node form fields. Each is typed against what its expected
children would be. For example, a TextFormField would expect to have children that are
either TextFormField or TextWidgetAnnotation and a PushButtonFormField would expect to
have children that are either PushButtonFormField or PushButtonWidgetAnnotation. If a
form field is expected to have heterogeneous children, it is best to use a GenericFormField.

All form fields, whether they are node or leaf form fields will implement the interface
IFormElement. This element defines the properties and behaviors of a PDF form field. A node
form field can have children and will therefore have a valid ChildFields property, whereas a
leaf form field will always have a null ChildFields property.

While the PDF specification does not forbid that a CheckBoxFormField having non-Check-
Box children, it is likely the field inheritance in the final PDF will do unexpected things.
When a document with a PdfForm is saved, DotPdf will flag and optionally repair fields
that have mismatched children by substituting the appropriate form field type or a Gen-
ericFormField if the children are heterogeneous.

Generally speaking, no type of widget annotation requires a parent, but Radi-
oButtonWidgetAnnotations will not function as a group without a parent. The Radi-
oButtonFormField comes with a set of static factory methods for making a
RadioButtonFormField and correctly constructing and associating a set of Radi-
oButtonWidgetAnnotations with that field. When accessing the "value" of a radio set, it is
more common to look at the parent field rather than all of the children to determine the cur-
rent value.

Leaf Form Fields

In PDF forms, leaf form fields are form elements that can have no children and in nearly all
cases contain the actual data of a field value. In DotPdf, all leaf form fields are implemented
as subclasses of BaseWidgetAnnotation. The specifics of using widgets annotations is
described previously in this document.

Visiting Nodes

While it's straight forward to lop over all the nodes within a PdfForm object, DotPdf provides
a number of utility methods for enumerating through the nodes in a form. The main mech-
anism for doing this is via the FormVisitor object, which provides methods for visiting each of

- 230 -

Programming with JoltPdf

the nodes in breadth first and depth first order as well as specializations for visiting only
BaseWidgetAnnotation objects.

Each of the methods returns IEnumerable<IFormElement> or IEnu-
merable<BaseWidgetAnnotation>.

Converting a PdfForm to Xml

Form Actions

At present, there are two global form actions available: reset and submit. Upon executing a
PdfResetFormAction, all fields or all specified fields will be reset to their default value. Upon
executing a PdfSubmitFormAction, all fields or all specified fields (and other data) will be sub-
mitted to a URI.

Creating a Form With Field Reset
Java Copy Code

PdfGeneratedDocument doc = new PdfGeneratedDocument();
doc.Form = new PdfForm();
PdfGeneratedPage page = doc.addPage(PdfDefaultPages.letter());

TextWidgetAnnotation color = new TextWidgetAnnotation(new PdfBounds
(36, 700, 400, 24), "color", "Orange");
color.setTextValue(color.getDefaultTextValue());
doc.getForm().getFields().add(color);
page.getAnnotations().add(color);

PdfTextLine label = new PdfTextLine("Helvetica", 14, "Favorite
Color:", new PdfPoint(36, 730));
page.getDrawingList().add(label);

PushButtonWidgetAnnotation reset = new PushButtonWidgetAnnotation(new
PdfBounds(36, 670, 100, 25), "Reset", null, null);
reset.getClickActions().add(new PdfResetFormAction());
page.getAnnotations().add(reset);

doc.save("resetform.pdf");

Note that in the preceding example, the reset button was added to the page, but not to
the form. This will prevent it from being subjected to the reset. This could also have been
accomplished by putting the button in the form and adding it to the Fields property of
the PdfResetFormAction. Since PushButtonFields and PushButtonWidgetAnnotation
objects do not have a value, resetting them to doesn't make sense.

- 231 -

Chapter 3

DotPdf_Repair
Staring with DotPdf version 10.4, DotPdf includes the facility to detect and repair damaged
PDF documents. These repairs include:

l Repairing dictionary objects that have missing required values

l Repairing dictionary objects that have incorrect optional values

l Repairing array objects that have syntactically incorrect values or references to non-
existent objects

l Repairing stream objects that have incorrect length values or are missing the
endstream keyword or have incorrect line-ending placement

l Repairing damaged or incorrect cross-reference tables

l Repairing incorrect PDF file versions

l Restoring "orphaned" pages

l Substitute blank pages for unreadable pages

In most cases, client code will use the repair mechanism as is, but it is possible to hook into
the repair process to help inform decisions for repairs to the document and its contents. This
can include allowing or disallowing repairs that may remove content from the document or
otherwise change the document's appearance, reporting errors and repairs as they happen, or
providing an alternative to the value that will be used to replace an incorrect or missing value
in a repair.

DotPdf Repair Process

Generally speaking, DotPdf avoids reading entire PDF documents at any one time. For
example, when you create a PdfDocument object from an existing PDF document, DotPdf
only reads the document metadata and enough information to determine how many pages are
in the document as well as the orientation of each page.

No other information will be read from the PDF document until PdfDocument.Save() is
called. At this point only the "live" objects in the PDF document will be read. For example, if
you open a multi-page PdfDocument and remove one or more pages from the document
then save, the pages you removed (and all the objects they reference, provided they aren't ref-
erenced by other pages) are no longer live and won't be read.

By contrast, PdfGeneratedDocument reads in substantially more objects when constructed
from an existing PDF.

Error detection happens at three possible points in time: when a PDF document is initially
opened, when PDF objects are read, and when PDF objects are written. When errors are detec-
ted, they are reported and a request is made to accept the error for potential repair. If errors
are not accepted for potential repair, DotPdf will throw a PdfException. Aften an entire
PDF object has been read, any errors will be checked for repair. An error will be repaired if the
repair system is configured to perform that class of repair and if the consequences of the
repair are acceptable. If the proposed repair and consequences are acceptable, it will be per-
formed. After all repairs have been completed for the object, if there were any unperformed
repairs, a PdfException is thrown, otherwise processing continues.

When a PdfException is thrown during repair, it may get caught inside DotPdf and induce
further repairs. If it was not caught, it will be passed on to client code and the repair has
failed.

- 232 -

Programming with JoltPdf

One exception to the process is the repair of the document cross-reference table. The cross-ref-
erence table is a structure within a PDF that is used to locate all the other objects within the
file. If the cross-reference table is damaged or can't be located, then the cross-reference table
will be rebuilt by scanning the entire contents of file. If this error is not repaired, nothing else
can be done with the file.

Detecting Errors

In general, any time any content is loaded or saved from a PDF document an a PdfException
is thrown, the document is a candidate for repair. DotPdf defines two types of exception,
PdfException and PdfParseException. The latter inherits from PdfException and is
thrown when DotPdf is unable to locate the document cross reference table or the cross ref-
erence table is damaged.

Detecting Errors
Java Copy Code

public bool PdfHasErrors(Stream inPdf)
{

Stream outStm = GetTemporaryStream();
try {

PdfDocument doc = new PdfDocument(inPdf);
doc.save(outStm);
return false;

}
catch (PdfException) {

return true;
}
finally {

RemoveTemporaryStream(outStm);
}

}

It should be noted that this will be a potentially expensive process as the entire document
will be scanned. In a workflow environment, it may be more convenient to catch
PdfException when a file is being processed, mark it as a failure, repair it later and then
resubmit it for processing.

Errors can also be fixed as part of the normal course of events. Be aware that not all errors
can be repaired and repairing some errors may remove or otherwise change visual content in a
PDF. It is never acceptable to blindly copy a repaired document over the ori-
ginal document.

Repairing Errors

In order to request that errors should be repaired in a PDF in the course of processing it, con-
struct a PdfDocument object or a PdfGeneratedDocument passing in a RepairOptions
object. Passing in null is equivalent to performing no repair.

The RepairOptions object contains sets of properties that determine if and in some cases
how errors will be repaired. It also contains event objects that an application can use to track
errors.

The default values in RepairOptions represent a good balance of repairing problems
without excessively damaging the appearance or content of the document.

- 233 -

Chapter 3

Repairing Errors
Java Copy Code

RepairOptions repairOptions = new RepairOptions();
try {

PdfDocument doc = new PdfDocument(null, null, pdfStream, null
repairOptions);

doc.save(outputStream);
}
catch (PdfException)
{

// clean up outputStream
}
finally {

if (options.StructureOptions.RepairedStoredStream != null)
options.StructureOptions.RepairedStoredStream.Dispose();

}

This example opens a PDF document (with no passwords) and copies it to the output, repair-
ing errors. The try/catch is necessary since repairs may fail and client code should manage the
output stream since it may contain partial/invalid PDF. The finally clause is necessary since
repairs may require rebuilding the entire file. Under such circumstances, a temporary file will
be created. The call to Dispose() will remove the temporary file.

As a convenience, PdfDocument contains several flavors of the static method Repair()
which is equivalent to the above code except with no catch block:

Repairing Errors With the Repair Method
Java Copy Code

try {
PdfDocument.repair(pdfStream, outputStream, new RepairOptions());

}
catch (PdfException)
{

// clean up outputStream
}

Repair Events

In order to provide feedback about what is happening during the repair process, the RepairOp-
tions object contains the following events:

l ProblemEncountered - fired when a problem is first encountered

l ProblemRepaired - fired when a problem has been repaired

l ProblemSkipped - fired when a problem was skipped during repair.

Each event will include the ProblemEventArgs object. Within the ProblemEventArgs is a prop-
erty named Problem of type BaseProblem. This object describes the nature of the problem in
the Description property and possible consequences of enacting the repair in the Con-
sequences property.

- 234 -

Programming with JoltPdf

In the case of DotPdf, the Consequences object will be of type PdfRepairConsequences. This
object contains information about the severity of the problem as well as a description of what
may happen if the repair is enacted.

Counting Errors

This code sample shows how to track the number of errors and repairs in a PDF document.

The event mechanism is separate from the problem selection process. No filtering is done with
events.

Repair Filtering

The RepairOptions object in DotPdf has two levels of filtering, the first is when a problem
is encountered. This is to decide if the problem should be accepted for repair. The second is at
repair time to choose if a repair will be enacted. An application could choose to filter based on
the type of problem or on the severity of the consequences or on the number of problems
encountered.

The properties are named ProblemSelectorand RepairSelector. It is not necessary to
set either. Setting them to null (default) will instruct DotPdf to ignore them.

Both delegates return enumerated types which include the value Default, which is an indic-
ation that DotPdf should take its default action.

Setting RepairOptions to Filter Based on Severity

Note that you can get this same behavior without a filter by setting
RepairOptions.MaximumAllowableSeverity.

Structure Options

In the RepairOptions object there is a property named StructureOptions of type Struc-
tureRepairOptions. This object contains a set of properties that are used to control what struc-
tural elements within a PDF will be repaired.

Property Name Property Type Default Value Property Meaning
RebuildCrossRe-
ferenceTable

bool false If set to true, a PDF with
a damaged cross-ref-
erence table will have the
entire file rebuilt with a
correct cross-reference
table. Upon completion,
the property
RepairedStoredStream, if
non-null will be set to
the StoredStream that
was used for a tem-
porary file. This type of
repair may be expensive
in terms of time and stor-
age. It is appropriate to
use this repair if opening
a PDF throws a
PdfParseException.

- 235 -

Chapter 3

StoredStreamProvider IStoredStreamProvider Tem-
pFileStreamPro-
vider

This object is used to cre-
ate a StoredStream
object that is used to
hold the contents of a
PDF file that had to
have its cross-reference
table rebuilt.

RepairedStoredStream StoredStream null After repairing a cross
reference table, this prop-
erty will be non-null and
will contain the Stream
that holds the repaired
PDF. It is necessary
to Dispose this object
after you are done
with the document.

RestoreOrphanedPages bool true If set to true and
RebuildCrossRe-
ferenceTable is set to
true, then any pages
found in the document
during rebuilding that
aren't part of the doc-
ument's page collection
will be appended to the
end of the page col-
lection.

CreateBlankPageIfNoPag-
esFound

bool true PDF documents must
have at least one page. If
set to true and a doc-
ument contains no pages
or nothing but damaged
pages, a blank letter-
sized page will be added
to the page collection.
Although the document
will have no content on
pages, it is still may be
possible to access
metadata, forms and
form data, scripts, and
other non-page content.

Cor-
rectIn-
validDataStreamLengths

bool true If set to true, embedded
data stream objects with
incorrect lengths will be
repaired by measuring
the actual length of the
stream.

- 236 -

Programming with JoltPdf

RepairNameTrees bool true Name trees are struc-
tures stored within PDF
documents that hold
information associated
with names. For
example, there is a name
tree that is used to hold
JavaScript objects that
are used globally within
the document. If set to
true, damaged name
trees will be repaired.

Duplic-
ateNameTreeEntryRe-
pairAction

Duplic-
ateNameTreeEntryRe-
pairAction

None Determines an action to
take when duplicate
name entries are found.
None is equivalent to
ignoring any newer
duplicates. Other
options include remove
the previous one or
renaming either.

AllowPartialNameTrees bool true If an unrecoverable error
happens while reading a
name tree, this will
allow whatever name
tree entries have already
been read to be passed
on. Partial name trees
may result in later errors
when links try to find
missing named des-
tinations or named
JavaScripts.

NameSelector NameReplacer null Given a Duplic-
ateNameTreeEntryRe-
pairAction that requires
renaming an element,
this property will be
used to rename the
duplicate entry. This del-
egate will be passed the
name to rename and a
list of all other names in
the tree. This delegate
should return a new
name that is not con-
tained within the list.

Array Options

When elements of arrays are damaged, this set of options will be used to determine how to
repair the elements.

- 237 -

Chapter 3

Property Name Property Type Default
Value

Property Meaning

RepairDamagedElements bool true If set to true, DotPdf will attempt to
repair damaged elements PDF
arrays. This is done, be default, by
putting in a reasonable default for
the item.

ElementReplacer ArrayElementReplacer null This delegate, when non-null, will
be called by DotPdf to create an
appropriate value for a damaged
array element.

Property Repair

Most of the internals of PDF documents consist of Dictionary objects that have property
names associated with values. The PDF specification defines the content and meaning of ele-
ments within dictionaries. For example, a dictionary may have a property that is required and
the dictionary is incorrect if the property is missing.

DotPdf has a mechanism for tracking the meanings and settings of PDF dictionaries and auto-
matically determines appropriate ways to repair them if they are damaged or missing. It is
possible to override the default behaviors in DotPdf by setting the PropertyValueReplacer in
the PropertyRepairOptions object.

Note that it is not possible for client code to make appropriate substitutions for all damaged
dictionary properties since many dictionary properties (including the dictionaries themselves)
are internal types and inaccessible to client code. Further, changes to dictionary contents typ-
ically require deep understanding of the PDF specification.

Repairing Damaged URI Objects
Java Copy Code

RepairOptions options = new RepairOptions();
options.getPropertyOptions().setReplacer(UriRepairer);
//...
public boolean UriRepairer(PropertyInfo property, String propertyName,
Object propertyOwner,

Object defaultValue, Object fileParsedValue, Object
fileSuppliedValue,

Object replacementvalue)
{

if (property.getPropertyType() == Uri)
{

replacementValue = new Uri("http://www.mywebsite.com");
return true;

}
return false;

}

By default, DotPdf will replace invalid Uri objects with a Uri that points to "http://127.0.0.1".
This code will override that setting and replace them with the "http://www.mywebsite.com".

- 238 -

Programming with JoltPdf

Digital Signatures
Digital signing is process whereupon an electronic document can be marked so that the doc-
ument's origin can be verified and changes to the document can be detected.

In PDF, there are two main operations for signing a document: certification, and signing.

Both operations involve the signature annotation widget, but the meanings of certification
and signature are different.

In the case of a certification, you are placing a signature widget annotation on the document
(either visible or invisible) along with a set of rules that dictate what changes are allowed to
be made to the document as a whole. When a document has been certified, the person apply-
ing the certification is saying, "I declare that the content of this document is exactly what it
should be at the time of the certification and you may only make the following changes..."

In the case of signing, you are placing an equivalent to a physical signature in the document
and which carries the same implications of physical signing (accepting terms of a contract,
verifying that information is complete and so on). The signature may dictate that other wid-
get annotations should become locked when it has been signed.

In DotPdf, you can certify an unsigned, uncertified document and you can sign a certified or
uncertified document. In addition, you can sign an already signed or unsigned document as
long as there are signature annotations that are unsigned and that the document allows that.

DotPdf signs a document using the PKCS7 standard and the modification detection can be
configured to use any of SHA1, SHA256, SHA384, and SHA512 as the message digest. The
actual digital signature content is represented by an X509 certificate or a chain of X509 cer-
tificates.

When working with DotPdf for digital signatures, there are four main actions that are avail-
able:

1. Certifying a PDF document

2. Getting information about a signed or certified document

3. Making allowable changes to a signed or certified document

4. Signing a document

This document will be organized around each of these actions and how to do them.

DotPdf only supports signing and getting information about PDF documents signed
using the PKCS7 standard.

DotPdf tries to use the .NET object RSACryptoServiceProvider to perform signing and cer-
tifying operations. This object is retrieved from the X509Certificate2 object provided by cli-
ent code. Some versions of this object can not sign with anything but the SHA1 message
digest algorithm. The CmsInformation object, upon construction, checks to see if the
requested message digest algorithm is supported by the RSACryptoServiceProvider. If it is
not, the CmsInformation object checks to see if the X509Certificate2 object can be trans-
ferred to an equivalent supported by BouncyCastle. If not, then at signing time, the sign-
ing code will either fall back to using SHA1 or will throw an exception. This behavior is
controlled by the UnsupportedContentDigestAlgorithmAction property in the CmsIn-
formation object, set by the constructor. If the X5092Certificate came from a file, such as

- 239 -

Chapter 3

a .pfx file and was opened requesting the ability to export the private key, then if the
RSACryptoServiceProvider is unable to sign the document then BouncyCastle will be used.

Future version of DotPdf digital signatures are likely to include more direct access to cer-
tificates via BouncyCastle.

Certifying Documents

To certify a PDF document is to apply an X509 certificate to the document and a set of rules
to prevent and detect tampering with the original document. In DotPdf, this is done through
the PdfDocument object or the PdfGeneratedDocument object. Both objects, as of version
10.6, contain a property called DocumentCertification which describes how the document
should be certified when it is saved.

The DocumentCertification property is either a PdfDocumentCertification object or a PdfGen-
eratedDocumentCertification object. Both objects descend from a common base class. The
main properties are:

Name Type Meaning
IsVisible bool Determines if the certification should be vis-

ible in the document or not. Typically cer-
tifications are invisible, but the user should
have the choice.

CmsInformation CmsInformation This object contains the chain of X509
digital signatures that will be used for the
object. As well an information on how the
digital signature will be built.

AllowedChanges DocumentMDPAllowedChanges Specifies what changes may be made to the
document after certification

l None - No changes are allowed

l FillFormsAndSigning - only widget
annotations (form fields) may be
modified

l FillFormsSigningAndAnnotations -
widget annotations (form fields)
may be modified and any type of
annotation can be added to the doc-
ument.

The real difference between the two is that the PdfDocument object is extremely light weight
and can only describe the certification and how it is to be applied in very simple ways. For cer-
tifying a Pdf through PdfDocument, you can only specify the page number of the page upon
which the signature annotation that will represent the certificate will appear and the bound-
ing box that will contain it. The appearance of the signature will be the default appearance
and is not changeable. Using PdfGeneratedDocument, you can have the entire suite of PDF
generation tools available and the signature can have a custom appearance. Rather than call-
ing out a page and location for the signature, you place a SignatureWidgetAnnotation on

- 240 -

Programming with JoltPdf

PdfGeneratedPage through its annotation collection as well as putting it in the PdfGen-
eratedDocumentCertification object.

Choosing Between PdfDocument And PdfGeneratedDocument For Certification

Criteria PdfDocument PdfGeneratedDocument
Certification signature will be invisible. ü ü

Memory may be an issue on target system. ü

Appearance of signature is important. ü

Placement of signature is important relative to other
annotations.

ü

Controll ing Changes To Certified Documents

You can choose a set of global rules for how the document may be used post certification. This
is done by setting the AllowedChanges property of the DocumentCertification object. This set-
ting will depend upon your needs for the document. Use this guide to help choose the appro-
priate setting:

Value Reasons to use this setting
None The document should never be changed in any way after it

has been certified. For example, a transcription of an agree-
ment.

FillFormsAndSigning Only widget annotations (form fields) may be modified
after certification. This is useful for creating a document
that will to be signed by another party at a later date and
will might have other information added to the document.
For example, a permission form might contain a signature
box as well as a checkbox to indicate that the signer is act-
ing as a parent or guardian.

FillFormsSigningAndAnnotations It will be possible to edit any and all annotations that are
associated with the document (unless they have been
locked by a previous signature). This setting is useful if
you are creating a document that should not be modified
in its content, but is under review by other people who will
mark up the document with annotations.

NotSpecified This value cannot be used in DotPdf when certifying a doc-
ument nor will DotPdf generate a document with this
value. It is present because it is possible to create doc-
uments with other tools that have no meaningful value for
this property. One would only see this value in examining
the certification settings on an existing PDF.

Getting Signer Information

When examining a PDF document, you might want a way to display or act on information
about signature or certification properties present in the document. PdfDocu-
mentSignatureInformation provides a lightweight mechanism for accessing this information
as well as additional tools present to verify the PDF-oriented aspects of the document and its
contents. Note that DotPdf does not attempt to validate the content of the X509 certificate

- 241 -

Chapter 3

chain used in the document, but the objects representing the certificate chain are readily avail-
able.

In the PdfDocumentSigner object, there is a method, GetInfo() which accepts a PDF stream
and optionally a password and returns a new PdfDocumentSignatureInformation object which
describes the certificate and signatures, if any, that were in the supplied PDF.

PdfDocumentSignatureInformation contains the following properties:

Name Type Meaning
HasSignatures bool True if the document is contains sig-

nature widget annotations, false oth-
erwise. If the document contains
signatures, those signatures may be
unsigned.

IsCertified bool True if the document contains a cer-
tification signature, false otherwise.

AllowedChanges DocumentMDPAllowedChanges If IsCertified is true, this property
indicates what changes may be
made to the document (if any). If
IsCertified is false, this property will
contain NotSpecified.

Certificate PdfSignatureInformation If IsCertified is true, this property
will contain a PdfSig-
natureInformation object that
describes the certificate. If IsCertified
is false, this property will be null.

SignatureCount int Returns the total number of sig-
nature widget annotations in the
document, 0 if there are none.

SignedSignatureCount int Returns the total number of sig-
nature widget annotations that are
signed, 0 if there are none.

Signatures IList<PdfSignatureAnnotation> Gets a list of information about all
signature widget annotations in the
document. This list will contain
both signed and unsigned signature
widgets. There are no signatures,
this list will be empty.

ErrorsEncountered IList<SignatureValidationError> If any errors occurred in the process
of retrieving the document signature
information, this list will contain a
description of those errors. Errors
may be either PDF specification
related errors or errors encountered
while retrieving the signature data.
Unlike PdfDocument and PdfGen-
eratedDocument, repair of errors
within a damaged PDF are not pos-
sible because repairing the errors
would invalidate any signature in
the file. Errors will be marked with
their severity.

- 242 -

Programming with JoltPdf

Note that getting the PdfDocumentInformation object does not perform an exhaustive check
on all signatures as that can be very time-consuming. For example, when a signature widget
has been signed it may forbid changes to any (or all) other widget annotations on the page.
The PdfDocumentSignatureInformaion object will not give feedback about this class of errors.
To do that, call the Validate() method in PdfDocumentSignatureInformation, which will do
an exhaustive check to ensure that no changes have been made to the document that violate
the allowable changes. Validate() returns a list of SignatureValidationError describing what
problems were found. Validate does not attempt to validate the contents of any of the X509
certificates used to sign signatures.

Inside The PdfSignatureInformation Object

The PdfSignatureInformation object describes an individual signature with a PDF document.
This information includes the physical location of the signature as well the X509 Certificate
used with that signature. It contains the following properties:

Name Type Meaning
IsSigned bool True if the signature widget annotation associated with

the PdfSignatureInformation object has been signed,
false otherwise.

IsVisible bool True if the signature is visible on page, false otherwise.
The PDF specification has multiple ways of determining
if a signature widget annotation is visible. IsVisible will
be false if any of those indicate that the signature is not
visible.

Certification PdfCertification Returns an object that describes the certificate used to
sign the signature widget annotation or null if it is not
yet signed.

PageNumber int The 0-based index on which the signature widget
annotation can be found. Note that even invisible sig-
natures should exist on a page.

AnnotationIndex int The 0-based index within the annotation collection
where the signature widget annotation can be found.

SignatureIteration int Each time one of more signatures in an existing PDF
document has been signed, all changes are encap-
sulated within the PDF document as a revision. This
number indicates in which revision the signature has
been signed. It is meaningless if IsSigned is false.

SignatureFieldName string This is the dot-qualified name of the signature widget
annotation. In PDF the fields can be represented as a
tree of fields. The name of any given field will be its
name prepended by its parent name and a period char-
acter, for example "parent.child". This corresponds to
the FieldFullName property of the signature widget
annotation.

PdfCertification And CmsInformation

The PdfCertification object is a container for the certificate that was used to sign a given sig-
nature. Currently, it only represents X509 certificate objects, but in the future may represent
other types of certificates as well. CMS is Cryptographic Message Syntax which is used to
sign, digest, authenticate or encrypt information. The CmsInformation object in DotPdf con-
tains the chain of certificates that were used to sign a document. It also contains the digest

- 243 -

Chapter 3

algorithm that will be used when creating a digital signature, but that property does not
reflect the actual file content when getting information about a file at present.

Document Signing Operations

A document that has been certified or contains signed signatures has to be handled in a very
particular way. For example, a PDF document that has been certified may not allow any
changes to the document whatsoever or it may allow form fields to be filled in. Both PdfDocu-
ment and PdfGeneratedDocument operate in a way that requires them to rewrite the entire
document upon doing a save operation. This type of action would completely invalidate and
certificate or signed signatures. In PDF, when making changes to such a document, it is neces-
sary to append any changes as a revision to the existing document.

DotPdf manages this class of operation through the PdfDocumentSigner object. PdfDocu-
mentSigner in many ways is similar to PdfGeneratedDocument in that it has a representation
of the PdfForm object contained within a PDF as well as the a representation of all annota-
tions on all pages and a set of document resources.

With PdfDocumentSigner, you can add, remove, or change annotations or form fields con-
tained within a PDF, but only if those changes are allowed by the document's certification or
signatures. For example, if a field within a PDF document had been marked read-only as a
side-effect of a signature being applied, then attempting to change properties in that field will
generate an exception. As of DotPdf 10.6, BaseWidgetAnnotation and BaseFormField have
new properties, IsReadOnlyOrFieldReadOnly and IsFieldReadOnly respectively. When that
property is true, any attempt to change another public property within that object will throw
an InvalidOperationException.

Inside The PdfDocumentSigner Object

A PdfDocumentSignerObject is constructed from a Stream that allows both read and write
operations (in Java, an ImageOutputStream). Once constructed, the object gives you access to
the annotations and fields contained within the PDF document and allows/disallows editing
of those objects (depending on the permissions). When the changes are committed, they will
be appended onto the supplied stream.

The PdfDocumentSigner object can only commit one round of changes. If you need mul-
tiple sets of changes, you will need to construct a new PdfDocumentSigner object for each
revision.

PdfDocumentSigner appends changes to the stream supplied in the constructor. If you
cannot make changes to your source PDF, it is your responsibility to make a copy first.
PdfDocumentSigner will not make a copy for you.

The following properties are available in the PdfDocumentSigner obect:

Name Type Meaning

- 244 -

Programming with JoltPdf

Info PdfDocumentSignatureInformation Upon construction, PdfDocu-
mentSigner will create a
PdfDocu-
mentSignatureInformation
object that is uses (in part) to
create the rest of the contents
of PdfDocumentSigner. This
object provides information as
to what signatures are present
within the document, if they
are signed, and what changes
are allowable to the document.
See here for more information.

Resources GlobalResources This object is used to hold
resources that are necessary for
rendering new annotations or
editing existing annotations
(for example, Templates to use
as appearances). Unlike
PdfGeneratedDocument, no
effort is made to import exist-
ing resources from the PDF doc-
ument. Sharing or changing
previous resources may pro-
duce a document that is either
invalid or violates the security
of previous signatures or cer-
tifications.

- 245 -

Chapter 3

PagesOfAn-
notations

ReadOnlyCol-
lection<IList<BaseAnnotation>>

This collection represents the
annotations on each page by
using one entry for every page.
Each entry in PagesOfAn-
notations is a list of annota-
tions that are on the
corresponding page. If a page
has no annotations, the cor-
responding list will be non-
null, but empty.

If document forbids adding or
removing fields or annotations,
each sub-collection will also be
read-only.

If a document forbids editing
annotations or fields, those
objects will be marked read-
only and any attempt to
change a property in that
object will throw an Inval-
idOperationException.

Although the top level
properties in annotations
are read-only, sub-objects
such as AppearanceSet
objects are not. Even
though it appears like you
can change these objects,
changes to sub-elements in
a read-only object will be
ignored. This prevents mali-
cious code from attempting
to change the appearance
of a signed signature wid-
get annotation (for
example).

- 246 -

Programming with JoltPdf

Form PdfForm The form fields in a PDF doc-
ument are represented as a con-
ceptual tree of fields such that
the leaves of the tree, which
will always be a sub-class of
BaseWidgetAnnotation, con-
tain the actual data. Although
the tree can be built in exactly
one level, it is possible to organ-
ize data in the tree such that
related elements are in the
same hierarchy (for example
Person.Name.First and Per-
son.Name.Last share the same
general structure in the tree
except for the terminal fields
First and Last).

If a document forbids adding
or removing fields or widget
annotations, each collection of
child fields will be read-only.

When adding or removing
a widget annotation from
the document via
PagesOfAnnotations, it is
imperative that the parallel
change be made in Form.

Performing Specific Tasks

Task Steps
Retrieve field data from a
signed or certified document

1. Construct a PdfDocumentSigner object from a PDF
stream

2. Iterate through the fields in the Form using either a
FormVisitor or a WidgetVisitor

3. Close the stream
Collect signature information
from a signed or certified
object

1. Construct a PdfDocumentSigner object from a PDF
stream

2. Use the Info property to locate the signed signature
widget annotations

3. Use the Info property to retrieve the PdfSig-
natureInformation which object for each signature con-
tains the certificate as well as the location within
PagesOfAnnotations for the associated signature wid-
get annotation.

4. Close the stream

- 247 -

Chapter 3

Edit annotations and fields
within a certified document as
part of a review work flow

1. Construct a PdfDocumentSigner object from a PDF
stream

2. Verify that changes are allowed via the
AllowedChanges property of PdfDocumentSigner.Info
object

3. Present the PagesOfAnnotations and/or Form for edit-
ing

4. After all changes are complete, call
AppendChangesFinal.

Optionally edit annotations
and fields and sign one or
more signature widget annota-
tions that are unsigned.

1. Construct a PdfDocumentSigner object from a PDF
stream

2. Verify that changes are allowed via the
AllowedChanges property of PdfDocumentSigner.Info
object

3. Present the PagesOfAnnotations and/or Form for edit-
ing

4. Collect information to construct a collection of
PdfDocumentSignature objects for each signature.

5. Call AppendSignaturesFinal, passing in the collection
of PdfDocumentSignature objects.

The Append...Final() methods each have a bool argument which instructs DotPdf to close
the stream once the changes are made. Although closing the stream is not strictly neces-
sary, this is there to remind you that the changes that you have made to the stream rep-
resent a final step. Any attempt to call these methods subsequently will result in a
PdfException.

Customizing Signature Appearances

In PDF the appearance of a signature widget annotation is managed through the regular
annotation appearance mechanism. Any annotation may choose to associate a set of appear-
ances with itself that will be used by PDF viewers to determine the visual styling of the object.
If there is no style present, it is up to the viewed to determine the appearance. See here for
more details.

The easiest way to manage the appearance of a signature annotation is to allow DotPdf to do
it for you. When you create a PdfDocumentSignature object, there is a property named
AutoGenerateSignatureAppearance which, when set to true, will induce DotPdf to call the
method SignatureWidgetAnnotation.MakeBasicAppearance. This method generates a new
Template resource and returns the name of the resource.

When this is method is called automatically, it will use the signature widget annotations
Bounds, BorderColor, BackgroundColor, and DefaultTextAppearance values. If either Border-
Color and BackgroundColor are null, black and white respectively will be used instead. If
DefaultTextAppearance is null, DotPdf will use 12 point Helvetica.

When you call the method yourself, you can set any of these values as you want and can also
disable the Atalasoft logo, if you so choose.

- 248 -

Programming with JoltPdf

Beyond these customizations, you can also retrieve the automatically generated Template
resource and edit it directly as well. You can also choose to not use the automatically gen-
erated appearance and make your own from scratch.

DotPdf_DigitalSignatures_HowTos

The following is a set of common tasks that can be done with the DotPdf digital signature
objects.

How To Certify A Document With PdfDocument

This sample certifies an existing PDF with an X509 certificate. The certificate will be invisible.

If you do not choose to provide a diget method to the CmsInformation constructor, it will use
SHA256 by default.

While the SHA1 digest method is available, the PDF specification does not recommend its
use.

Certifying A Document
C# Copy Code

public void CertifyDocument(Stream inPdf, Stream outPdf,

X509Certificate2Collection certChain,
PdfContentDigestMethod digestMethod)

{

PdfDocument doc = new PdfDocument(inPdf);

CmsInformation cmsInfo = new CmsInformation(certChain,
digestMethod,

UnsupportedContentDigestAlgorithmAction.FallBackToSHA1);

doc.DocumentCertification = new PdfDocumentCertification(cmsInfo,
DocumentMDPAllowedChanges.None,

false, 0, PdfBounds.Empty);

doc.Save(outPdf);

}

Java Copy Code

- 249 -

Chapter 3

public void certifyDocument(ImageInputStream inPdf, ImageOutputStream
outPdf,

List<X509Certificate> certChain, PdfContentDigestMethod
digestMethod) throws IOException

{

PdfDocument doc = new PdfDocument(inPdf);

CmsInformation cmsInfo = new CmsInformation(certChain,
digestMethod);

doc.setDocumentCertification(new PdfDocumentCertification(cmsInfo,
DocumentMDPAllowedChanges.NONE,

false, 0, PdfBounds.empty());

doc.save(outPdf);

}

How To Determine If A Document Is Certified Or Signed

This sample opens an existing PDF and determines if it has been signed or certified.

Creating A Simple Annotation
C# Copy Code

public bool DocumentIsSigned(Stream inPdf)

{

PdfDocumentSignatureInformation info = PdfDocumentSigner.GetInfo
(inPdf);

if (info.Errors.Count > 0)

ReportErrors(info.Errors);

return info.IsCertified || info.SignedSignatureCount > 0;

}

Java Copy Code
public void documentIsSigned(ImageInputStream inPdf) throws
IOException

{

PdfDocumentSignatureInformation info = PdfDocumentSigner.getInfo
(inPdf);

if (info.getErrors().size() > 0)

reportErrors(info.getErrors());

return info.getIsCertified() || info.getSignedSignatureCount() >
0;

}

How To Fil l Fields Of A Certified Document

This sample fills in text fields in a previously signed PDF document.

- 250 -

Programming with JoltPdf

Fil l ing Fields In A Signed Document
C# Copy Code

public void FillFields(Stream inPdf, Dictionary<string, string>
fieldNamesAndValues)

{

PdfDocumentSigner doc = new PdfDocumentSigner(inPdf, null);

if (doc.Info.AllowedChanges == DocumentMDPAllowedChanges.None)

throw new Exception("Document may not be changed.");

foreach (BaseWidgetAnnotation anno in
FormVisitor.WidgetsBreadthFirst(doc.Form)) {

string value = null;

TextWidgetAnnotation txAnno = anno as TextWidgetAnnotation;

if (txAnno == null || anno.IsReadOnlyOrFieldReadOnly)

continue;

if (fieldNamesAndValue.TryGetValue(txAnno.FieldFullName, out
value))

txAnno.TextValue = value;

}

doc.AppendChangesFinal(true); // close the stream

}

Java Copy Code

- 251 -

Chapter 3

public void FillFields(ImageOutputStream inPdf,

HashMap<String, String> fieldNamesAndValues) throws IOException

{

PdfDocumentSigner doc = new PdfDocumentSigner(inPdf, null);

if (doc.Info.AllowedChanges == DocumentMDPAllowedChanges.NONE)

throw new RuntimeException("Document may not be changed.");

for (BaseWidgetAnnotation anno : FormVisitor.widgetsBreadthFirst
(doc.getForm())) {

// com.atalasoft.internals.reflection.Cast returns the first
argument

// cast to the type of supplied class if and only if the first
argument is

// an instance of the supplied class.

TextWidgetAnnotation txAnno = Cast.as(anno,
TextWidgetAnnotation.class);

if (txAnno == null || anno.getIsReadOnlyOrFieldReadOnly())

continue;

if (fieldNamesAndValue.containsKey(txAnno.getFieldFullName())
{

String value = fieldNamesAndValue.get
(txAnno.getFieldFullName());

txAnno.setTextValue(value);

}

}

doc.appendChangesFinal(true); // close the stream

}

How To Sign A Document With An Existing Signature

This sample signs a preexisting signature widget annotation in a PDF document. Specifically,
it signs the first unsigned annotation in the document.

Signing A Pre-Existing Signature Widget Annotation
C# Copy Code

- 252 -

Programming with JoltPdf

private SignatureWidgetAnnotation FindFirstSig(PdfDocumentSigner doc)

{

SignatureWidgetAnnotation sig = null;

for (int i = 0; i < doc.PagesOfAnnotations.Count; i++) {

for (int j=0; j < doc.PagesOfAnnotations[i].Count; j++) {

sig = doc.PagesOfAnnotations[i][j] as
SignatureWidgetAnnotation;

if (sig != null && !sig.IsSigned) return sig;

}

}

return null;

}

public void SignFirstSignatureWidget(Stream inPdf, CmsInformation
sigData)

{

PdfDocumentSigner doc = new PdfDocumentSigner(stm, null);

SignatureWidgetAnnotation sig = FindFirstSig(doc);

if (sig == null)

throw new Exception("No signature found.");

PdfDocumentSignature docsig = new PdfDocumentSignature(sigData,
sig, true, true);

doc.AppendSignaturesFinal(true, new PdfDocumentSignature[]{ docsig
});

}

Java Copy Code

- 253 -

Chapter 3

private SignatureWidgetAnnotation findFirstSig(PdfDocumentSigner doc)

{

SignatureWidgetAnnotation sig = null;

for (int i = 0; i < doc.getPagesOfAnnotations().size(); i++) {

for (int j=0; j < doc.getPagesOfAnnotations().get(i).size();
j++) {

sig = Cast.as(doc.getPagesOfAnnotations().get(i).get(j),
SignatureWidgetAnnotation. class);;

if (sig != null && !sig.getIsSigned()) return sig;

}

}

return null;

}

public void SignFirstSignatureWidget(ImageOutputStream inPdf,

CmsInformation sigData) throws IOException

{

PdfDocumentSigner doc = new PdfDocumentSigner(stm, null);

SignatureWidgetAnnotation sig = findFirstSig(doc);

if (sig == null)

throw new RuntimeException("No signature found.");

PdfDocumentSignature docsig = new PdfDocumentSignature(sigData,
sig, true, true);

doc.appendSignaturesFinal(true, new PdfDocumentSignature[]{ docsig
});

}

How To Add A Signature To A Document

This sample signs a possibly certified document by adding a widget annotation and signing
it.

Adding A Signature Widget Annotation To A PDF And Signing It
C# Copy Code

- 254 -

Programming with JoltPdf

public void AddAndSign(Stream inPdf, CmsInformation sigData, PdfBounds
bounds)

{

PdfDocumentSigner doc = new PdfDocumentSigner(stm, null);

if (doc.Info.AllowedChanges !=
DocumentMDPAllowedChanges.FillFormsSigningAndAnnotations)

throw new Exception("No changes allowed.");

SignatureWidgetAnnotation sig =

new SignatureWidgetAnnotation(bounds, "NewSig", null,
null);

doc.PagesOfAnnotations[0].Add(sig);

doc.Form.Fields.Add(sig);

PdfDocumentSignature docsig = new PdfDocumentSignature(sigData,
sig, true, true);

doc.AppendSignaturesFinal(true, new PdfDocumentSignature[]{ docsig
});

}

Java Copy Code
public void addAndSign(ImageOutputStream inPdf,

CmsInformation sigData, PdfBounds bounds) throws
IOException

{

PdfDocumentSigner doc = new PdfDocumentSigner(stm, null);

if (doc.getInfo().getAllowedChanges() !=

DocumentMDPAllowedChanges.FILL_FORMS_SIGNING_AND_
ANNOTATIONS)

throw new RuntimeException("No changes allowed.");

SignatureWidgetAnnotation sig =

new SignatureWidgetAnnotation(bounds, "NewSig", null,
null);

doc.getPagesOfAnnotations().get(0).add(sig);

doc.getForm().getFields().add(sig);

PdfDocumentSignature docsig = new PdfDocumentSignature(sigData,
sig, true, true);

doc.appendSignaturesFinal(true, new PdfDocumentSignature[]{ docsig
});

}

- 255 -

Chapter 3

OCR Engine
JoltImage OCR is designed to easily interface with other aspects of your application. It is
extensible with an event driven object-oriented object model. In just a few lines of code, a
developer can recognize an image and output that image to a file, or enumerate its lines,
words, and characters with confidence.

Data sources for the engine can be scanned images or files. The engine output consists of
either a file or a class hierarchy. This model is illustrated below.

As OcrEngine object is abstract, you cannot create an instance of this object. Nevertheless, the
object definition contains most of the necessary functionality needed for a concrete subclass to
function with a minimum of extra code.

The OcrEngine object has five primary components as illustrated below:

l Preprocessing options

l Document translators

l Page element factory

l Font mapping

l Font building

- 256 -

OCR Engine

- 257 -

Chapter 3

See Also
Tesseract Engine

- 258 -

OCR Engine

OCR Document Design Considerations
The design of the OcrDocument hierarchy reflects the conflicting needs of OCR engines and
OCR clients.

It is highly likely that a client of an OcrEngine will modify the OcrDocument and OcrPage
classes. For example, a client may add keywords to the OcrDocument object or thumbnail
images to the pages. Therefore, concrete engine implementations should never construct an
OcrDocument or OcrPage class directly. It is the responsibility of the client to supply
code to construct the objects within the hierarchy.

On the other hand, the engine is likely to supply implementations of OcrLine, OcrWord, and
OcrGlyph that can be tightly coupled to data supplied by the engine. This means that the
engine needs to be able to make very specific versions of these classes.

To manage these conflicting goals, the Ocr namespace uses two patterns. The first is a factory
used to construct document elements. Never access constructors for document elements
directly. Use the engine's Factory property instead as shown in the example below.

Example

Using The Factory Property To Construct A Document
Java Copy Code

OcrPage page;

//Do not do this!
page = new OcrPage(width, height, resolution);

//This is much better
page = engine.getFactory().OcrPage(width, height, resolution);

The page element object represents an extensible interface to the element without dictating
the implementation. The data accessor defines how that data is stored and retrieved.

For example, the implementation of the Baseline property in OcrLine does not use a member
variable to store the baseline. Instead, it uses an object called an OcrLineAccessor to get the
baseline. In this way, a client can supply definitions for OcrLine, OcrWord, and OcrGlyph.The
engine supplies the accessors that define how the object's information is retrieved. A client
could then override OcrLine to include extra information about a line of text without affecting
how any given engine is required to provide information that meets the core definition of an
OcrLine.

Furthermore, once an OcrDocument has been constructed, its elements can be edited, aug-
mented, deleted, or merged without affecting any of the existing components. For example,
OcrPage objects taken from an OcrDocument recognized by one engine can be inserted into an
OcrDocument that was produced by another engine, or words can be changed (spell corrected,
moved, replaced) without affecting any of the other elements, even if they are still tied to a
specific engine.

To get an OcrDocument or an OcrPage from an image, use the OcrEngine's recognize()
method. There are versions that operate on single images and ImageSource objects.

See Also
{Typical Engine Usage}

- 259 -

Chapter 3

Tesseract Engine
The Tesseract Engine, class name TesseractEngine, is an open source engine that Atalasoft
provides without charge for those who purchase the OCR Package. It is a commercial quality
OCR engine originally developed at HP between 1985 and 1995. HP and UNLV open-sourced
this engine in 2005.

Features

The OCR Tesseract Engine is a desktop royalty-free OCR toolkit based on Google's open-
source Tesseract OCR. This low cost option for intelligent document capture integrates seam-
lessly into JoltImage's OCR interface.

Supported Languages

The TesseractEngine supports many languages:

l Integrated support for the languages Dutch, English, French, German, Italian, Por-
tuguese, and Spanish

l Atalasoft tests additional language add-on packs for: Chinese(Simplified), Chinese(Tra-
ditional), Danish, Finnish, Greek, Hebrew, Japanese, Korean, Norwegian, Russian,
Swedish, Turkish

Supported Output Formatters

The TesseractEngine supports the following output formatters and provides a structure that
allows you to build your own.

l Text

Deployment

The Tesseract language files must be accessible. These are automatically placed in the OcrRe-
sources directory of the expanded installation zip. When deploying, you must either copy the
OcrResources to your application directory or tell the engine their location explicitly by
passing it into the TerractEngine constructor.

The JoltTesseractJNI.dll file needs to be placed somewhere in the java.library.path, the root
directory of application works in MOST cases.

Example

See the TesseractDemo project included in the Demos directory of the install.

- 260 -

OfficeAdapterDecoder Introduction

OfficeAdapterDecoder Introduction
JoltImage Office decoders can be used to decode Word and Excel documents. The codec is
available as a plug-in that integrates with JoltImage seamlessly.

The Office assembly includes the OfficeAdapterDecoder class which derives from ImageDe-
coder. This class implements the Read method to use Microsoft Office to render pages from
the document. It acts like any other JoltImage decoder in that it has a Read() method which
returns an AtalaImage of the decoded document. It also can be included in the RegisteredDe-
coders collection which is used when opening images using the AtalaImage constructor. It
supports Microsoft Office Word and Excel using the following formats:

• Office 97-2003 Document (.doc)

• Office 97-2003 Document Template (.dot)

• Office Open XML Document (.docx)

• Office Open XML Document Template (.dotx)

• Office Word XML Document (.xml)

• Rich Text Format (.rtf)

• Open Document Text Format (.odt)

• Office 97-2003 Spreadsheet (.xls)

• Office 97-2003 Spreadsheet Template (.xlt)

• Office XML Spreadsheet (.xlsx)

• Office XML Spreadsheet Template (.xltx)

Example how to register the OfficeAdapterDecoder:

RegisteredDecoders.Decoders.Add(new OfficeAdapterDecoder());

- 261 -

Chapter 3

OfficeSession
For situations where the OfficeAdapterDecoder will be used to read a batch of documents, it is
recommended that the OfficeSession class be used. The OfficeSession class will keep Office
loaded in the background ready to render documents and will remain open until its Close
method is called or it is disposed.

If an OfficeSession is not provided to the OfficeAdapterDecoder, the Read method will create
and release a new instance of Office each time it is called, which can have a negative impact
on performance.

An OfficeSession is created by the static Open method. Alternately, the OpenCached method
will create an OfficeSession which will cache the documents it reads, consuming more
memory but providing faster performance for subsequent reads on the same stream.

How to: Convert an Office document to an AtalaImage

The OfficeAdapterDecoder class can be used in the same was as any other ImageDecoder. The
following C# code demonstrates using the OfficeAdapterDecoder to create a method which
will convert a document stream and page index to an AtalaImage.

AtalaImage RenderDocument(Stream documentStream, int pageIndex)

{

OfficeAdapterDecoder decoder = new OfficeAdapterDecoder();

return decoder.Read(documentStream, pageIndex, null);

}

How to: Convert a collection of Office documents to AtalaImages using an OfficeSession

The OfficeAdapterDecoder has an overloaded constructor which takes an OfficeSession to use
to perform rendering.

IEnumerable<AtalaImage> RenderDocuments(Stream[] documentStreams)

{

using(OfficeSession officeSession = OfficeSession.Open())

{

OfficeAdaptorDecoder decoder = new OfficeAdaptorDecoder(officeSession);

foreach(Stream stream in documentStreams)

{

int frameCount = decoder.GetFrameCount(stream);

for(int frameIndex = 0; frameIndex < frameCount; ++frameIndex)

{

yield return decoder.Read(stream, frameIndex, null);

}

}

}

}

- 262 -

OfficeAdapterDecoder Introduction

How to: Create a WebDocumentRequestHandler configured to handle Office documents using
an OfficeSession.

This sample implements the WebDocumentRequestHandler to decode Office documents using
an OfficeSession in the WDV.

internal sealed class OfficeWebDocumentRequestHandler : WebDocumentRequestHandler

{

private readonly OfficeSession officeSession = OfficeSession.Open();

public OfficeWebDocumentRequestHandler()

{

OfficeAdapterDecoder officeDecoder = new OfficeAdapterDecoder(this.officeSession);

this.DocumentInfoRequested += (o, e) =>

{

string fileName = HttpContext.Current.Request.MapPath(e.FilePath);

if(File.Exists(fileName))

{

using(Stream stream = File.OpenRead(fileName))

{

if(OfficeAdapterDecoder.IsValidFormat(stream))

{

ImageInfo imageInfo = OfficeAdapterDecoder.GetImageInfo(stream);

int dpi = OfficeAdapterDecoder.Resolution;

e.Resolution = new Dpi(dpi, dpi, ResolutionUnit.DotsPerInch);

e.PageCount = imageInfo.FrameCount;

e.ColorDepth = imageInfo.ColorDepth;

e.PageSize = imageInfo.Size;

}

}

}

};

this.ImageRequested += (o, e) =>

{

string fileName = HttpContext.Current.Request.MapPath(e.FilePath);

if(File.Exists(fileName))

{

using(Stream stream = File.OpenRead(fileName))

{

if(OfficeAdapterDecoder.IsValidFormat(stream))

- 263 -

Chapter 3

{

e.Image = OfficeAdapterDecoder.Read(stream, e.FrameIndex, null);

}

}

}

};

}

~OfficeWebDocumentRequestHandler()

{

this.officeSession.Close();

}

}

- 264 -

Barcode Recognition

Barcode Recognition
The JoltBarcodeReading Add-On adds advanced barcode recognition of images to your Java
applications. This component is very easy to use and designed specifically for Java.

Licensing is runtime royalty free for desktop applications.

- 265 -

Chapter 3

Features
Barcode Reader has the following features:

l Recognizes all barcodes in an image.

l Returns the string value of each barcode recognized.

l Reads twenty-one industry 1D symbologies as well as QR Code, PDF417 and DataMat-
rix 2D symbologies.

l Automatically detects orientation of barcode (East, South, West, North)

l Returns the bounding rectangle of all recognized barcodes

l Returns the coordinates of the start and end lines, can be used to construct a polygon
encompassing the barcode area

l Detects the type of barcode recognized

l Integrates with JoltImage with the ability to include an image viewer and pre-pro-
cessing capabilities such as deskew, despeckle, and annotations. Returns position of
checksum character (if present)

l Returns any supplemental barcodes

l Deploys as a single managed assembly alongside JoltImage dependencies.

- 266 -

Barcode Recognition

Editions
JoltBarcodeReading is available in three editions:

Edition Supports
Code39 Only Simple barcode recognition such as separator pages in batch scanning jobs
All 1D All supported 1D barcodes
Add 1D and 2DAll supported 1D and 2D barcodes

- 267 -

Chapter 3

Symbologies
The supported symbologies for 1D and 2D barcodes are listed below.

1D Barcodes

codeABARcode 93 Patch codeRM4SCC (Royal Mail)
code 11 EAN-13 Planet Telepen
code 128 EAN-8 Plus 2 UPC-A
code 32 Interleaved 2 of 5Plus 5 UPC-E
code 39 ITF-14 Postnet

2D Barcodes

DataMatrix
PDF417
QR Code

- 268 -

Barcode Recognition

Requirements
The requirements for using the JoltBarcodeReadingare:

l Java 1.6 or above

l JoltImage

- 269 -

Chapter 3

Deployment
As with all JoltImage components, the jar files must be deployed alongside your application.
When using the BarcodeReader, the jar files that need to be copied with your application
include:

Jar Contains
ProductAPI.jar Shared classes such as licensing management
JoltImage.jar JoltImage class library assembly
JoltBarcodeReading.jarBarcode Recognition Engine

- 270 -

Barcode Recognition

How to: Use the JoltImage Barcode Reader
JoltBarcodeReading was designed to be very easy to use. An application needs just a few lines
of code to read all supported barcodes located within an image.

The following examples demonstrate how to read barcodes from an Atalasoft.Ima-
ging.AtalaImage object.

The steps involved in reading a barcode are as follows:

1. Create an instance of BarCodeReader by passing in an AtalaImage object.

2. Create an instance of the ReadOpts class and set the symbology(s) and directions you
wish to read.

3. Invoke the ReadBars() method in the BarCodeReader class. This returns an array of Bar-
code instances. Each element of the array corresponds to a barcode read from the
image.

These steps are implemented in the code that follows.

Example

Reading A Barcode
Java Copy Code

// 1: Load the image containing barcodes
AtalaImage myImage = new AtalaImage("barcodes.tif");
// 2: Create BarCodeReader for specified image.
BarCodeReader br = new BarCodeReader(myImage);
// 3: Create a ReadOptions.
ReadOpts options = new ReadOpts();
// 4: Read left to right.
options.setDirection(EnumSet.of(Directions.EAST));
// 5: Symbology to read.
options.setSymbology(EnumSet.of(Symbologies.CODE_128));
// 6: Read the barcodes contained in the image.
Barcode[] bars = br.readBars(options);
// 7: Process the results.
for (int i = 0; i < bars.Length; i++)

System.out.println(bars[i].toString());

You can use a single BarCodeReader instance to read the same image a number of times,
each time with different options as shown in the example that follows.

- 271 -

Chapter 3

How to: Read a Barcode with Options Set

Example

Reading A Barcode With Options Set
Java Copy Code

// 1: Load the image containing barcodes
AtalaImage myImage = new AtalaImage("barcodes.tif");
// 2: Create BarCodeReader for specified image.
BarCodeReader br = new BarCodeReader (myImage)
// 3: Create a ReadOptions. ReadOpts options = new ReadOpts();

// 4: Read left to right.
options.setDirection(EnumSet.of(Directions.EAST));
// 5: Symbology to read.
options.setSymbology(EnumSet.of(Symbologies.CODE_128));
// 6: Read the barcodes contained in the image.
Barcode[] bars = br.readBars(options);

if (bars.length == 0)
{

// No barcodes read. Maybe the image was scanned upside down. Let's
see

options.setDirection(EnumSet.of(Directions.WEST));
bars = br.readBars(options);

}

- 272 -

	Introduction
	Installing JoltImage
	Licensing JoltImage
	Product Identities

	Web Scanning
	Basic Requirements
	Getting Started with Web Capture
	Web Capture Guide

	Web Scanning Server Reference
	Troubleshooting Web Capture Handlers
	Extending the WebCaptureRequestHandler
	Connecting to SharePoint
	Extending the KicHandler
	Connecting to Kofax Import Connector (KIC) Web Services
	Configuring Kofax Import Connector (KIC)

	Web Scanning Client Reference
	Initializing the Control on the Client
	Connecting to UI Controls
	Filtering Selection Lists
	Connecting Controls With No UI
	Importing Loose Pages
	Batch Fields
	Working with Index Fields
	Handling Events
	Handling Errors
	Setting Scanning Options
	Connecting to the Web Document Viewer
	Using VirtualReScan (VRS)
	Testing Your Application
	Troubleshooting Web Scanning Problems
	Uninstalling Web Capture MSI
	Client API Reference

	Web Document Viewer
	Web Document Viewer Overview
	Web Document Viewer Guide
	WebDocumentViewer Javascript API
	Constructor & Configuration Parameters
	Public Methods
	Events
	The Annotation Object
	WebDocumentViewer Sample Code
	WebDocumentThumbnailer Javascript API
	Constructor & Configuration Parameters
	Public Methods
	Events

	Atalasoft JoltPdf
	Introduction

	Programming with JoltPdf
	Introduction
	Mathematical Model
	Transforms
	PdfGeneratedDocument
	Pages
	Creating Stationery
	Clipping
	Colors
	Rendering
	Resources
	Shapes
	Round Trip Documents
	Integrating with JoltImage
	Actions
	Annotations
	Annotation How To's
	PDF Forms
	DotPdf_Repair
	Digital Signatures

	OCR Engine
	See Also
	OCR Document Design Considerations
	Tesseract Engine

	OfficeAdapterDecoder Introduction
	OfficeSession

	Barcode Recognition
	Features
	Editions
	Symbologies
	Requirements
	Deployment
	How to: Use the JoltImage Barcode Reader
	How to: Read a Barcode with Options Set

